Log in

Encapsulation of Cumin essential oil in zein electrospun fibers: Characterization and antibacterial effect

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

In this work, electrospinning was applied to encapsulate the Cumin essential oil in zein electrospun fibers. Initially, the Cumin essential oil was obtained and characterized by GCMS and subsequently incorporated in 27% zein solution at 0, 2.5, 5, 10, and 20% (v/v) concentrations. The SEM and Image-J results showed that encapsulation of Cumin essential oil increased the diameter of zein electrospun fibers from 459 to 855 nm for 0% and 20% loaded electrospun fibers, respectively. The 3D-images of topographic surface of zein electrospun fibers was studied using AFM, and indicated that their morphology were in tubular shapes. The XRD was applied to study the physical structure of loaded electrospun fibers, and the XRD diffaractograms indicated the amorphous structure of electrospun fibers. The DSC thermograms indicated that encapsulation of Cumin essential oil increased the thermal stability of zein electrospun fibers. The FTIR spectra indicated the interaction between zein and Cumin essential oil and FTIR spectra also indicated that adding Cumin essential oil to the electrospun fibers affected the secondary structure of zein protein. The mechanical properties evaluation of electrospun fibers indicated that tensile strength increased with increasing Cumin essential oil from 0.28 (MP) to 3.55 (MP) for 0% and 20% loaded electrospun fibers. BET analysis was used to measure pore size of fibers. The obtained pore sizes were 7, 7.5, 8, 11, and 13 nm for 0, 2.5, 5, 10, and 20% loaded electrospun fibers, respectively. Antibacterial test was carried out by disc diffusion method, and results shown that Cumin essential oil loaded fiber mats inhibited the growth of S. aureus and E. coli, B. cereus, and S. enterica. According to results of this work, Cumin essential oil loaded fibers can be considered as an active packaging to be applied in packages of various foods such as cheese, meat and some other food products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Alborzi, Encapsulation of folic acid in sodium alginate-pectin-poly (ethylene oxide ) electrospun fibers to increase its stability. J Microencapsul (2012). https://doi.org/10.3109/02652048.2012.696153

    Article  PubMed  Google Scholar 

  2. P. Wen, Y. Wen, M.H. Zong, R.J. Linhardt, H. Wu, J Agric Food Chem 65, 9161 (2017)

    CAS  PubMed  Google Scholar 

  3. B. Ghorani, N. Tucker, Food Hydrocoll 51, 227 (2015)

    CAS  Google Scholar 

  4. S. Jafarzadeh, A. Salehabadi, A. Mohammadi Nafchi, N. Oladzadabbasabadi, S.M. Jafari, Trends Food Sci Technol 116, 218 (2021)

    CAS  Google Scholar 

  5. S. Jafarzadeh, S.M. Jafari, A. Salehabadi, A.M. Nafchi, U.S.U. Kumar, H.P.S.A. Khalil, Trends Food Sci Technol 100, 262 (2020)

    CAS  Google Scholar 

  6. S. Jafarzadeh, A.M. Nafchi, A. Salehabadi, N. Oladzad-abbasabadi, S.M. Jafari, Adv Colloid Interface Sci 291, 102405 (2021)

    CAS  PubMed  Google Scholar 

  7. R. Gyawali, S.A. Ibrahim, Food Control 46, 412 (2014)

    CAS  Google Scholar 

  8. A.R. Bilia, C. Guccione, B. Isacchi, C. Righeschi, F. Firenzuoli, M.C. Bergonzi, Evidence-Based Complement Altern Med (2014). https://doi.org/10.1155/2014/651593

    Article  Google Scholar 

  9. Z.C. Yao, M.W. Chang, Z. Ahmad, J.S. Li, J. Food Eng 191, 115 (2016)

    CAS  Google Scholar 

  10. S. Torres-Giner, A. Martinez-Abad, M.J. Ocio, J.M. Lagaron, J Food Sci (2010). https://doi.org/10.1111/j.1750-3841.2010.01678.x

    Article  PubMed  Google Scholar 

  11. M.A. Miri, J. Movaffagh, M.B.H. Najafi, M.N. Najafi, B. Ghorani, A. Koocheki, Fibers Polym 17, 769 (2016)

    CAS  Google Scholar 

  12. Y.P. Neo, S. Swift, S. Ray, M. Gizdavic-Nikolaidis, J. **, C.O. Perera, Food Chem 141, 3192 (2013)

    CAS  PubMed  Google Scholar 

  13. M. Dias Antunes, G. da Silva Dannenberg, Â.M. Fiorentini, V.Z. Pinto, L.T. Lim, E. da Rosa Zavareze, A.R.G. Dias, Int J Biol. Macromol 104, 874 (2017)

    PubMed  Google Scholar 

  14. J. Roustakhiz and A. Raissi, 6, 24 (2017).

  15. N. Hashemian, A.G. Pirbalouti, M. Hashemi, A. Golparvar, B. Hamedi, Aust J Crop Sci 7, 1752 (2013)

    Google Scholar 

  16. N. Khalil, M. Ashour, S. Fikry, A.N. Singab, O. Salama, Futur J Pharm Sci 4, 88 (2018)

    Google Scholar 

  17. Z. Ghafari, A. Alizadeh, R.B. Samani, Int J Biosci 4, 153 (2014)

    Google Scholar 

  18. A. Abdelraheim Belal, Am J Biosci 5, 70 (2017)

    Google Scholar 

  19. N.S. Iacobellis, P.L. Cantore, F. Capasso, F. Senatore, J Agric Food Chem 53, 57 (2005)

    CAS  PubMed  Google Scholar 

  20. N.H. Jazani, M. Zartoshti, S.H. Shahabi, Int J Pharmacol 4, 157 (2008)

    Google Scholar 

  21. H. Yang, P. Wen, K. Feng, M.H. Zong, W.Y. Lou, H. Wu, RSC Adv 7, 14939 (2017)

    CAS  Google Scholar 

  22. P.J. García-Moreno, K. Stephansen, J. Van Der Kruijs, A. Guadix, E.M. Guadix, I.S. Chronakis, C. Jacobsen, J Food Eng 183, 39 (2016)

    Google Scholar 

  23. M.A. Miri, M.B.H. Najafi, J. Movaffagh, B. Ghorani, J Polym Environ 29(4), 1089–1098 (2020)

    Google Scholar 

  24. J. Hafsa, M. Raafet, C. Limem, H. Majdoub, S. Rouatbi, LWT Food Sci Technol 68, 356–364 (2016)

    CAS  Google Scholar 

  25. M. Abbdellaoui, E.T. Bouhlali, L. El-Rhaffari, J Essent Oil-Bearing Plants 22, 1500 (2019)

    CAS  Google Scholar 

  26. J.N. Vieira, C.L. Gonçalves, J.P.V. Villarreal, V.M. Gonçalves, R.G. Lund, R.A. Freitag, A.F. Silva, P.S. Nascente, Braz J Biol 79, 432 (2019)

    CAS  PubMed  Google Scholar 

  27. M.M. Hajjari, M.T. Golmakani, N. Sharif, Lwt 145, 111373 (2021)

    CAS  Google Scholar 

  28. F. Hemmatkhah, F. Zeynali, H. Almasi, Food Bioprocess Technol 13, 533 (2020)

    CAS  Google Scholar 

  29. M.J. Nirmala, L. Durai, K.A. Rao, R. Nagarajan, Int J Nanomedicine 15, 795 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  30. S. Burt, Int J Food Microbiol 94, 223 (2004)

    CAS  PubMed  Google Scholar 

  31. S.D. Patil, Nusant Biosci 8, 60 (2016)

    Google Scholar 

  32. N.T. Ardekani, M. Khorram, K. Zomorodian, S. Yazdanpanah, H. Veisi, H. Veisi, Int J Biol Macromol 125, 743 (2019)

    CAS  PubMed  Google Scholar 

  33. S. Teilaghi, J. Movaffagh, Z. Bayat, J Polym Environ 28, 1614 (2020)

    CAS  Google Scholar 

  34. S. Ramakrishna, K. Fujihara, W.E. Teo, T.C. Lim, Z. Ma, An Introduction to Electrospinning and Nanofibers (World Scientific, Singapore, 2005)

    Google Scholar 

  35. S.H. Tan, R. Inai, M. Kotaki, S. Ramakrishna, Polymer (Guildf) 46, 6128 (2005)

    CAS  Google Scholar 

  36. R. Nayak, R. Padhye, I.L. Kyratzis, Y.B. Truong, L. Arnold, Text Res J 83, 606 (2013)

    Google Scholar 

  37. B. Rezaei, A.M. Shoushtari, M. Rabiee, L. Uzun, A.P.F. Turner, W.C. Mak, Adv Polym Technol 37, 2743 (2018)

    CAS  Google Scholar 

  38. C. Xu, F. Yang, S. Wang, S. Ramakrishna, J Biomed Mater Res 71A, 154 (2004)

    CAS  Google Scholar 

  39. V. Milleret, T. Hefti, H. Hall, V. Vogel, D. Eberli, Acta Biomater. 8, 4349 (2012)

    CAS  PubMed  Google Scholar 

  40. A.H. Ardekani-Zadeh, S.F. Hosseini, Carbohydr. Polym. 223, 115108 (2019)

    Google Scholar 

  41. W. Huang, T. Zou, S. Li, J. **g, X. **a, X. Liu, AAPS PharmSciTech 14, 675 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  42. H.M. Lai, P.H. Geil, G.W. Padua, J Appl Polym Sci 71, 1267 (1999)

    CAS  Google Scholar 

  43. M. Oliviero, L. Verdolotti, E. Di Maio, M. Aurilia, S. Iannace, J Agric Food Chem 59, 10062 (2011)

    CAS  PubMed  Google Scholar 

  44. Y.L. Han, Q. Xu, Z.Q. Lu, J.Y. Wang, Colloids Surf B Biointerfaces 120, 55 (2014)

    CAS  PubMed  Google Scholar 

  45. M. Oliviero, E. Di Maio, S. Iannace, J Appl Polym Sci 115, 277 (2010)

    CAS  Google Scholar 

  46. Z. Aghaei, B. Ghorani, B. Emadzadeh, R. Kadkhodaee, N. Tucker, Food Control 111, 107065 (2020)

    CAS  Google Scholar 

  47. L.H. Trinh, A. Takzare, D.D. Ghafoor, A.F. Siddiqi, S. Ravali, M. Shalbaf, M. Bakhtiar, J Drug Deliv Sci Technol 52, 818 (2019)

    CAS  Google Scholar 

  48. V. Müller, J.F. Piai, A.R. Fajardo, S.L. Fávaro, A.F. Rubira, E.C. Muniz, J Nanomater 2011, 1 (2011)

    Google Scholar 

  49. D.J. Sessa, M. Abdellatif, J.A. Byars, J Agric Food Chem 56, 7067 (2008)

    CAS  PubMed  Google Scholar 

  50. G. Perumal, S. Pappuru, D. Chakraborty, A.M. Nandkumar, D.K. Chand, M. Doble, Mater Sci Eng C 76, 1196 (2017)

    CAS  Google Scholar 

  51. I. Yousefi, M. Pakravan, H. Rahimi, A. Bahador, Z. Farshadzadeh, I. Haririan, Mater Sci Eng C 75, 433 (2017)

    CAS  Google Scholar 

  52. E. Zahedi, A. Esmaeili, N. Eslahi, M.A. Shokrgozar, A. Simchi, Mar Drugs 17, 27 (2019)

    CAS  PubMed Central  Google Scholar 

  53. S. Amjadi, H. Almasi, M. Ghorbani, S. Ramazani, Carbohydr Polym 232, 115800 (2020)

    CAS  PubMed  Google Scholar 

  54. B. Biduski, D.H. Kringel, R. Colussi, H.C.S. Hackbart, L.T. Lim, A.R.G. Dias, E.R. Zavareze, Int J Biol Macromol 132, 300 (2019)

    CAS  PubMed  Google Scholar 

  55. S. Zhaveh, A. Mohsenifar, M. Beiki, S.T. Khalili, A. Abdollahi, T. Rahmani-Cherati, M. Tabatabaei, Ind Crops Prod 69, 251 (2015)

    CAS  Google Scholar 

  56. R. Karimirad, M. Behnamian, S. Dezhsetan, Int J Biol Macromol 113, 662 (2018)

    CAS  PubMed  Google Scholar 

  57. S. Estevez-Areco, L. Guz, R. Candal, S. Goyanes, Food Packag Shelf Life 18, 42 (2018)

    Google Scholar 

  58. D. Brahatheeswaran, A. Mathew, R.G. Aswathy, Y. Nagaoka, K. Venugopal, Y. Yoshida, T. Maekawa, D. Sakthikumar, Biomed Mater (2012). https://doi.org/10.1088/1748-6041/7/4/045001

    Article  PubMed  Google Scholar 

  59. M. Aliabadi, M. Irani, J. Ismaeili, S. Najafzadeh, J Taiwan Inst Chem Eng 45, 518 (2014)

    CAS  Google Scholar 

  60. A.D. Moghaddam, M. Kazemi, M. Jebraeel, A. Sharifan, Food Technol Nutr 16, 91 (2019)

    Google Scholar 

  61. S. Daneshmandi, N. Soleimani, A.A. Pourfathollah, M. Sattari, Arak Med Univ J 13, 75 (2010)

    Google Scholar 

  62. L.J. Nohynek, H.L. Alakomi, M.P. Kähkönen, M. Heinonen, I.M. Helander, K.M. Oksman-Caldentey, R.H. Puupponen-Pimiä, Nutr. Cancer 54, 18 (2006)

    CAS  PubMed  Google Scholar 

  63. H. Chen, Fabrication of Zein Nanoparticle-Biopolymer Complexes to Deliver Essential Oils in Aqueous Dispersions, University of Tennessee, 2014.

  64. K.A. Rieger, J.D. Schiffman, Carbohydr Polym 113, 561 (2014)

    CAS  PubMed  Google Scholar 

  65. E.R. Rojas, G. Billings, P.D. Odermatt, G.K. Auer, L. Zhu, A. Miguel, F. Chang, D.B. Weibel, J.A. Theriot, K.C. Huang, Nature 559, 617 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  66. R.C.I. Azucena, C.L.J. Roberto, Z.R. Martin, C.Z. Rafael, H.H. Leonardo, T.P. Gabriela, C.R. Araceli, Antibiotics 8, 43 (2019)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to extend their thanks to the University of Zabol for its support in implementing the project. This work was supported by a grant from the University of Zabol (IR-UOZ-GR-4249).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Amin Miri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemi, M., Miri, M.A., Najafi, M.A. et al. Encapsulation of Cumin essential oil in zein electrospun fibers: Characterization and antibacterial effect. Food Measure 16, 1613–1624 (2022). https://doi.org/10.1007/s11694-021-01268-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-021-01268-z

Keywords

Navigation