Log in

Projecting the potential distribution and analyzing the bioclimatic factors of four Rhododendron subsect. Tsutsusi species under climate warming

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Tsutsusi is one of the eight subgenera of the Rhododendron genus. Four Tsutsusi species, R. indicum, R. simisii, R. oldhamii, and R. schlippenbachii, have high ornamental and medicinal values, resulting in an increasing market demand. These species thrive in cool and humid environments and are widely distributed in Europe and Asia. Whether global climate warming will affect the distribution of these valuable resources remains unclear. Thus, this study analyzed the climatic suitability of these species for the first time on the basis of 1552 geographical distribution points and 19 bioclimatic factors using the maximum entropy model. The results show that a suitable distribution area for all four species would decrease under climate warming. The main bioclimatic factors affecting their distribution are the mean temperature of the coldest quarter for R. indicum, the mean diurnal range for R. simisii, and precipitation of the warmest quarter for R. oldhamii and R. schlippenbachii. In addition, the contribution of the temperature-related bioclimatic factors to the distribution of R. indicum and R. simisii is higher than that of the associated precipitation-related climatic factors; in contrast, the contribution of precipitation-related bioclimatic factors to the distribution of R. oldhamii and R. schlippenbachii is higher than that of the temperature-related climatic factors. These results provide references for the introduction, conservation, sustainable development, and utilization of these four species in the future, and may also provide information with regards to other Rhododendron species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arora V, Scinocca J, Boer G, Christian J, Denman K, Flato G, Kharin V, Lee W, Merryfield W (2011) Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geo Res Let 38:L05805

    Article  Google Scholar 

  • Awasthi P, Bargali K, Bargali S, Jhariya M (2022a) Structure and functioning of Coriaria nepalensis dominated shrublands in degraded hills of Kumaun Himalaya. I. Dry Matter Dynamics Land Degrad Dev 33:1474–1494

    Article  Google Scholar 

  • Awasthi P, Bargali K, Bargali S, Khatri K (2022b) Nutrient return through decomposing Coriaria nepalensis litter in degraded hills of Kumaun Himalaya, India. Front Fores Global Change, 1008939.

  • Baboo B, Sagar R, Bargali S, Verma H (2017) Tree species composition, regeneration and diversity of an Indian dry tropical forest protected area. Trop Ecol 58(2):409–423

    Google Scholar 

  • Badola H, Paliwal G (2014) Distribution of insoluble polysaccharides in the shoot apex of Rhododendron arboreum Linn. during the annual growth cycle. Acta Soc Bot Pol 55(2):163–169

    Article  Google Scholar 

  • Bargali S, Shukla K, Singh L, Ghosh L, Lakhera M (2015) Leaf litter decomposition and nutrient dynamics in four tree species of dry deciduous forest. Trop Ecol 56(2):191–200

    Google Scholar 

  • Bargali K, Manral V, Padalia K, Bargali S, Upadhyay V (2018) Effect of vegetation type and season on microbial biomass carbon in Central Himalayan forest soils, India. CATENA 171:125–135

    Article  CAS  Google Scholar 

  • Bargali S, Shahi C, Bargali K, Negi B, Khatri K (2022) Energy and monetary efficiencies at the different altitudinal agroecosystems in central Himalaya. India Heliyon 8:e11500

    Article  PubMed  Google Scholar 

  • Bargali S, Padalia K, Bargali K (2019) Effects of tree fostering on soil health and microbial biomass under different land use systems in the Central Himalayas. Land Degrad Dev 1−15.

  • Bhandari M, Shankhwar R, Maikhuri S, Pandey S, Meena R, Ginwal H, Kant R, Rawat P, Martins-Ferreira M, Sliveira L (2021) Prediction of ecological and geological niches of Salvadora oleoides in arid zones of India: causes and consequences of global warming. Arab J Geosci 14(6):524

    Article  Google Scholar 

  • Bisht S, Bargali S, Bargali K, Rawat G, Rawat YS, Fartyal A (2022) Influence of anthropogenic activities on forest carbon stocks-a case study from Gori valley, western Himalaya. Sustainability 14(24):e16918

    Article  Google Scholar 

  • Bozkurt Ergül A, Sahan E, Kose N (2021) Growth responses of Pinus sylvestris L. to climate from the southeastern limit of its natural distribution area, Turkey. Dendrochronologia 70:125897–125916

    Article  Google Scholar 

  • Buraczyk W, Tulik M, Konecka A, Szeligowski H, Czacharowski M, Bedkowski M (2022) Does leaf mass per area (LMA) discriminate natural pine populations of different origins? Eur J for Res 141(6):1177–1187

    Article  Google Scholar 

  • Cao Y, DeWalt R, Robinson J, Tweddale T, Hinz L, Pessino M (2013) Using Maxent to model the historic distributions of stonefly species in Illinois streams: the effects of regularization and threshold selections. Ecol Model 259:30–39

    Article  Google Scholar 

  • Chang P, Hyeon Y, Su K, Ye P, Soo-Yun P, Jae K, Sang P (2018) Metabolomic profiling of the white, violet, and red Flowers of Rhododendron schlippenbachii Maxim. Molecules 23(4):827

    Article  Google Scholar 

  • Chung I, Hemapriya V, Kanchana P, Arunadevi N, Chitra S, Kim S, Prabakaran M (2019) Active-polyphenolic-compounds-rich green inhibitor for the surface protection of low carbon steel in acidic medium. Surf Rev Lett 27(6):1950154

    Article  Google Scholar 

  • Craven L, Goetsch L, Hall B, Brown G (2008) Classification of the Vireya group of Rhododendron (Ericaceae). Blumea 53(2):435–442

    Article  Google Scholar 

  • Eeckhaut T, Samyn G, Van Bockstaele E (2003) Screening of remote Rhododendron species and hybrids for interspecific hybridization with R. simisii hybrids. Commun Agric Appl Biol Sci 68:349–358

    CAS  PubMed  Google Scholar 

  • Eeckhaut T, Keyser E, Huylenbroeck J, Riek J, Bockstaele E (2007) Application of embryo rescue after interspecific crosses in the genus Rhododendron. Plant Cell Tissue Organ Cult 89(1):29–35

    Article  Google Scholar 

  • Fernández I, Morales N (2019) One-class land-cover classification using MaxEnt: the effect of modelling parameterization on classification accuracy. Peer J 7:e7016

    Article  PubMed  PubMed Central  Google Scholar 

  • Flor M, Romero M (2015) Biogeografía predictiva: técnicas de modelamiento de distribución de especies y su aplicación en el impacto del cambio climático. Espacio y Desarrollo 27:159–179

    Google Scholar 

  • Gebrewahid Y, Abrehe S, Meresa E, Eyasu G, Abay K, Gebreab G, Kidanemariam K, Adissu G, Abreha G, Darcha G (2020) Current and future predicting potential areas of Oxytenanthera abyssinica (A. Richard) using MaxEnt model under climate change in Northern Ethiopia. Ecol Processes 9:476–487

    Google Scholar 

  • Guo Y, Yu X, Chen S, Wen J, Chen Z (2020) Total flavones of Rhododendron simisii Planch flower protect rat hippocampal neuron from hypoxia−reoxygenation injury via activation of BKCa channel. J Pharm Pharmacol 72(1):111–120

    Article  CAS  PubMed  Google Scholar 

  • Ha S, Jung J, Kang H, Kim T, Yang J (2020) Tyrosinase activity and melanogenic effects of Rhododendron schlippenbachii extract in vivo and in vitro. J Korean Wood Sci Technol 48(2):166–180

    Article  Google Scholar 

  • Han M, Gao W, Shi B, ** G (2021a) Long-term (42 years) effect of thinning on soil CO2 emission in a mixed broadleaved-Korean pine (Pinus koraiensis) forest in Northeast China. Pedosphere 31(2):353–362

    Article  CAS  Google Scholar 

  • Han Q, Keeffe G, Cullen S (2021b) Climate connectivity of European forests for species range shifts. Forests 12(940):f12070940

    Google Scholar 

  • Hansen J, Sato M (2001) Trends of measured climate forcing agents. PNAS 98(26):14778–14783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassan G, De Francesco C, Dieguez S (2013) The significance of modern diatoms as paleoenvironmental indicators along an altitudinal gradient in the Andean piedmont of central Argentina. Palaeogeogr Palaeoclimatol Palaeoecol 369:349–360

    Article  Google Scholar 

  • Hsieh Y, Chung J, Wang C, Chang C, Chen C, Hwang S (2013) Historical connectivity, contemporary isolation and local adaptation in a widespread but discontinuously distributed species endemic to Taiwan, Rhododendron oldhamii (Ericaceae). Heredity 111(2):147–156

    Article  PubMed  PubMed Central  Google Scholar 

  • Hsieh Y, Chang C, Chung J, Hwang S (2020) Demographic history and adaptive synonymous and nonsynonymous variants of nuclear genes in Rhododendron oldhamii (Ericaceae). Sci Rep 10:16658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang C, Chen J, Tsang M, Chung J, Chang C, Hwang S (2015) Influences of environmental and spatial factors on genetic and epigenetic variations in Rhododendron oldhamii (Ericaceae). Tree Genet Genomes 11(1):1–16

    Article  CAS  Google Scholar 

  • Huo S, Li Y, Li R, Chen R, **ng H, Wang J, Zhao Y, Song X (2021) Genome-wide analysis of the MADS-box gene family in Rhododendron hainanense Merr. and expression analysis under heat and waterlogging stresses. Ind Crops Prod 172:114007

    Article  CAS  Google Scholar 

  • Ji C, Cao W, Chen Y, Yang H (2016) Carbon balance and contribution of harvested wood products in China based on the production approach of the intergovernmental panel on climate change. Int J Environ Res Public Health 13(11):1132

    Article  PubMed  PubMed Central  Google Scholar 

  • Karki G, Bhatta B, Devkota N, Acharya R, Kunwar R (2021) Climate change adaptation (CCA) interventions and indicators in Nepal: implications for sustainable adaptation. Sustain 13(23):13195

    Article  Google Scholar 

  • Karki G, Bhatta B, Devkota N, Acharya R, Kunwar R (2022) Climate change adaptation (CCA) research in Nepal: implications for the advancement of adaptation planning. Mitig Adapt Strat GL 27:18–32

    Article  Google Scholar 

  • Khan A, Li Q, Saqib Z, Khan N, Habib T, Khalid N, Majeed M, Tariq A (2022) MaxEnt modelling and impact of climate change on habitat suitability variations of economically important Chilgoza Pine (Pinus gerardiana Wall.) in South Asia. Forests 13:715

    Article  Google Scholar 

  • Kim G, Shin K, Kim C, Kwon Y (2006) Flavonoids from the Leaves of Rhododendron schlippenbachii. Saengyak Hakhoechi 37(3):177–183

    CAS  Google Scholar 

  • Kim J, Choi J, Choi C, Park S (2013) Impacts of changes in climate and land use/land cover under IPCC RCP scenarios on streamflow in the Hoeya River Basin, Korea. Sci Total Environ 452–453:181–195

    Article  PubMed  Google Scholar 

  • Kron K, Powell E (2009) Molecular systematics of Rhododendron subgenus Tsutsusi (Rhodoreae, Ericoideae, Ericaceae). Edinburgh J Bot 66(1):81–95

    Article  Google Scholar 

  • Li W, Guo Q (2013) How to assess the prediction accuracy of species presence–absence models without absence data? Ecography 36(7):788–799

    Article  Google Scholar 

  • Liu Y, Lin L, Tung Y, Ho S, Chen Y, Lin C, Wu J (2017) Rhododendron oldhamii leaf extract improves fatty liver syndrome by increasing lipid oxidation and decreasing the lipogenesis pathway in mice. Int J Med Sci 14(9):862–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Huang P, Lin F, Yang W, Gaisberger H, Christopher K, Zheng Y (2019) MaxEnt modelling for predicting the potential distribution of a near threatened rosewood species (Dalbergia cultrata Graham ex Benth). Ecol Eng 141:105612

    Article  Google Scholar 

  • Liu N, Zhang L, Zhou Y, Tu M, Wu Z, Gui D, Ma Y, Wang J, Zhang C (2021a) The Rhododendron Plant Genome Database (RPGD): a comprehensive online omics database for Rhododendron. BMC Genomics 22(1):376–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Fiza L, He Y, Hussain M, Zhang C (2021b) Functional annotation of a full-length transcriptome and identification of genes associated with flower development in Rhododendron simisii (Ericaceae). Plants 10(4):649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo S, Xu Q, Peng G, Chen Z (2018) The protective effect of total flavones from Rhododendron simisii Planch. on myocardial ischemia/reperfusion injury and its underlying mechanism. J Evidence-Based Complementary Altern Med 6139372.

  • Manral V, Bargali K, Bargali S, Shahi C (2020) Changes in soil biochemical properties following replacement of Banjoak forest with Chir pine in central Himalaya. India Ecol Processes 9(30):1–9

    Google Scholar 

  • Manral V, Bargali K, Bargali S, Jhariya M, Padalia K (2022) Relationships between soil and microbial biomass properties and annual flux of nutrients in Central Himalaya forests, India. Land Degrad Dev 33:2014–2025

    Article  Google Scholar 

  • Marlon E, Townsend P, Narayani B, Luis O (2019) Kuenm: an R package for detailed development of ecological niche models using Maxent. Peer J 7:e6287

    Google Scholar 

  • Martel J, Brissette F, LucasPicher P, Troin M, Arsenault R (2021) Climate change and rainfall intensity–duration–frequency curves: overview of science and guidelines for adaptation. J Hydrol Eng 26(10):03121001

    Article  Google Scholar 

  • Meijón M, Rodríguez R, Cañal M, Feito I (2008) Improvement of compactness and floral quality in azalea by means of application of plant growth regulators. Sci Hortic 119(2):169–176

    Article  Google Scholar 

  • Miedaner T, Juroszek P (2021) Climate change will influence disease resistance breeding in wheat in Northwestern Europe. Theor Appl Genet 134:1771–1785

    Article  PubMed  PubMed Central  Google Scholar 

  • Neeraj K, Nasir M, Raeesh M, Vivek K, Pawan K, Vipin K (2018) Ethnomedicinal, phytochemical and pharmacological updates on Hygrophila auriculata (Schum.) Hiene: an overview. J Integr Med 16(5):299–311

    Article  Google Scholar 

  • Phillips S, Anderson R, Schapire R (2006) Maximum entropy modeling of species geographic distributions. Ecol Modell 190(3):231–259

    Article  Google Scholar 

  • Phillips S, Anderson R, Dudík M, Schapire R, Blair M (2017) Opening the black box: an open-source release of Maxent. Ecography 40(7):887–893

    Article  Google Scholar 

  • Puyravaud J, Davidar P, Laurance W (2010) Cryptic loss of India’s native forests. Science 329(2):32–33

    Article  CAS  PubMed  Google Scholar 

  • Raquel S, María A (2021) Impact of climate change on the Andean distribution of Poa scaberula (Poaceae). Flora 278:151805

    Article  Google Scholar 

  • Rivera-Chavez F, Bäumler A (2015) The pyromaniac inside you: Salmonella metabolism in the host gut. Ann Rev Microbiol 091014.

  • Sabunaite J, Vitas A (2013) Spontaneous regeneration of Rhododendron plants: first evidence from Lithuania. Pol J Ecol 61(1):171–174

    Google Scholar 

  • Schmidt-Lebuhn A, Kumar M, Kessler M (2005) An assessment of the genetic population structure of two species of Polylepis Ruiz & Pav. (Rosaceae) in the Chilean Andes. Flora 201(4):317–325

    Article  Google Scholar 

  • Shamilov A, Kantar Y, Usta I (2007) Use of MinMaxEnt distributions defined on basis of MaxEnt method in wind power study. Energy Convers Manage 49(4):660–677

    Article  Google Scholar 

  • Shcheglovitova M, Anderson R (2013) Estimating optimal complexity for ecological niche models: a jackknife approach for species with small sample sizes. Ecol Modell 269:9–17

    Article  Google Scholar 

  • Shen H, Zhao B, Xu W, Liang W, Huang W, Li H (2017) Effects of heat stress on changes in physiology and anatomy in two cultivars of Rhododendron. S Afr J Bot 112:338–345

    Article  CAS  Google Scholar 

  • Shirasawa K, Kobayashi N, Nakatsuka A, Ohta H, Isobe S (2021) Whole-genome sequencing and analysis of two azaleas, Rhododendron ripense and Rhododendron kiyosumense. DNA Res 28(5):dsab010

    Article  PubMed  PubMed Central  Google Scholar 

  • Shumyk M, Kliuienko O, Korkulenko O, Popil N, Ostapyuk V (2018) Ontomorphogenesis of summergreen (deciduous) species of the genus Rhododendron L. ex situ. Plant Introduction 79:39–51

    Google Scholar 

  • Sobek-Swant S, Kluza D, Cuddington K, Lyons D (2012) Potential distribution of emerald ash borer: what can we learn from ecological niche models using Maxent and GARP? Forest Ecol Manag 281:23–31

    Article  Google Scholar 

  • Sonia D, Matteo C, Takashi H, Nobuo K, Stefania D, Valentina S (2017) Adaptation to iron deficiency and high pH in evergreen azaleas (Rhododendron spp.): potential resources for breeding. Euphytica 213(7):148

    Article  Google Scholar 

  • Srinet R, Nandy S, Watham T, Padalia H, Patel N, Chauhan P (2022) Measuring evapotranspiration by eddy covariance method and understanding its biophysical controls in moist deciduous forest of northwest Himalayan foothills of India. Trop Eco 63:387–397

    Article  CAS  Google Scholar 

  • Steen-Larsen H, Risi C, Werner M, Yoshimura K, Masson-Delmotte V (2017) Evaluating the skills of isotope-enabled general circulation models against in situ atmospheric water vapor isotope observations. J Geophys Res Atmos 122(1):246–263

    Article  CAS  Google Scholar 

  • Tagane S, Hiramatsu M, Okubo H (2008) Hybridization and asymmetric introgression between Rhododendron eriocarpum and R. indicum on Yakushima Island, southwest Japan. J Plant Res 121(4):387–395

    Article  CAS  PubMed  Google Scholar 

  • Tekin S, Guner E, Cilek A, Cilek M (2021) Selection of renewable energy systems sites using the MaxEnt model in the Eastern Mediterranean region in Turkey. Environ Sci Pollut Res 28:51405–51424

    Article  Google Scholar 

  • Verma K, Pandey J (2022) Collateral implications of carbon and metal pollution on carbon dioxide emission at land-water interface of the Ganga River. Ent SCI Poll Res 29:24203–24218

    Article  Google Scholar 

  • Vibhuti C, Yadu B, Korram J, Satnami M, Dubey A, Kumar M, Keshavkant S (2020) Carbon dot induces tolerance to arsenic by regulating arsenic uptake, reactive oxygen species detoxification and defense-related gene expression in Cicer arietinum L. Plant Phy Biochem 156:78–86

    Article  Google Scholar 

  • Warren D, Glor R, Turelli M (2010) ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33(3):607–611

    Google Scholar 

  • Watham T, Padalia H, Srinet R, Nandy S, Verma PA, Chauhan P (2021) Seasonal dynamics and impact factors of atmospheric CO2 concentration over subtropical forest canopies: observation from eddy covariance tower and OCO-2 satellite in Northwest Himalaya. India Environ Monit Assess 193(2):106–130

    Article  CAS  PubMed  Google Scholar 

  • **e C, Tian E, Jim C, Liu D, Hu Z (2022) Effects of climate-change scenarios on the distribution patterns of Castanea henryi. Ecol Evol 12:e9597

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu J, Luo H, Nie S, Zhang R, Mao J (2021) The complete mitochondrial and plastid genomes of Rhododendron simisii, an important parent of widely cultivated azaleas. Mitochondrial DNA Part B 6(3):1197–1199

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu F, Wu Z, Shen J, Huang J, Groen TA, Skidmore AK, Ma K, Wang T (2021) Low-elevation endemic Rhododendrons in China are highly vulnerable to climate and land use change. Ecol Indic 126:107699

    Article  Google Scholar 

  • Zhang Y, ** X, Ding B, Zhu J (2009) Pollen morphology of Rhododendron subgen. Tsutsusi and its systematic implications. J Syst Evol 47(2):123–138

    Article  Google Scholar 

  • Zhang K, Yao L, Meng J, Tao J (2018) Maxent modeling for predicting the potential geographical distribution of two peony species under climate change. Sci Total Environ 634:1326–1334

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huie Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project funding: This research was supported by the National Natural Science Foundation of China (32260415) and Guizhou Provincial Science and Technology Project (Qianke Combination Foundation-ZK [2023] Key 010).

The online version is available at http://www.springerlink.com

Corresponding editor: Yanbo Hu.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5139 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Li, H. Projecting the potential distribution and analyzing the bioclimatic factors of four Rhododendron subsect. Tsutsusi species under climate warming. J. For. Res. 34, 1707–1721 (2023). https://doi.org/10.1007/s11676-023-01626-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-023-01626-1

Keywords

Navigation