Log in

Surface structure of (111)A HgCdTe

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The surface of (111)A HgCdTe has been studied by reflection high-energy electron diffraction and atomic force microscopy (AFM). The as-grown liquid-phase epitaxy (LPE) surface has bilayer (3.7 ± 0.2 Å) step/terrace structures, macro-steps, and cross-hatch patterns. Macro-steps occur about the \([11\bar 2]\) and are from 10–40 Å in height. AFM and x-ray measurements indicate the as-grown epilayer is ≈0.2° off-cut (random polar angle) from the (111). 〈110〉 cross-hatch lines consistent with bilayer (step height=3.9 ± 0.2 Å) {111} slip dislocation are observed. The native oxide/carbon layer for the as-grown LPE (111)A HgCdTe is ≈8 Å. The experimental results suggest that the as-grown LPE surface approximates an equilibrium vicinal crystal structure. The 0.1% Br:ethylene glycol wet chemically etched surfaces retained the macro-step structure, but numerous small protrusions (10–100 Å height, ≈300 Å diameter) developed. The plasma-etched (111)A HgCdTe surface is crystalline, but exhibits surface disorder and is roughened.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.P. McKelvey, Solid State and Semiconductor Physics (New York: Harper & Row Publisher, 1966), pp. 485–500.

    Google Scholar 

  2. W.A. Moreau, Semiconductor Lithography: Principles, Practices, and Materials (New York: Plenum Press, 1988).

    Google Scholar 

  3. J.B. Varesi, J.D. Benson, M. Jaime-Vasquez, M. Martinka, A.J. Stoltz, Jr., and J.H. Dinan, J. Electron. Mater., 1443–1448 (2006), in this issue.

  4. A.J. Stoltz, Jr., M. Jaime-Vasquez, J.D. Benson, J.B. Varesi, and M. Martinka, J. Electron. Mater., 1461–1464 (2006), in this issue.

  5. Digital Instruments Veeco Metrology, Santa Barbara, Ca. 93117.

  6. J.E. Mahan, K.M. Geib, G.Y. Robinson, and R.G. Long, J. Vac. Sci. Technol. A8, 3692 (1990).

    Google Scholar 

  7. M.G. Lagally, D.E. Savage, and M.C. Tringides, presented at NATO Advanced Research Workshop on Reflection High Energy Electron Diffraction and Reflection Electron Imaging of Surfaces, Veldhoven, the Netherlands, 1987, p. 139.

  8. J.D. Benson et al., J. Electron. Mater. 34, 726 (2005).

    Article  CAS  Google Scholar 

  9. Φ Physical Electronics Division, Eden Prairie, Mn. 55343.

  10. D.E. Aspenes and H. Arwin, J. Vac. Sci. Technol. A2, 1309 (1984).

    Google Scholar 

  11. I.M. Kotina, L.M. Tukhkonen, G.V. Patsekina, A.V. Shchukarev, and G.M. Gusinski, Semicond. Sci. Technol. 13, 890 (1998).

    Article  CAS  Google Scholar 

  12. P.W. Leech, P.J. Gwynn, and M.H. Kibel, Appl. Surf. Sci. 37, 291 (1989).

    Article  CAS  Google Scholar 

  13. A.J. Stoltz, J.D. Benson, M. Thomas, P.R. Boyd, M. Martinka, and J.H. Dinan, J. Electron. Mater. 31, 749 (2002).

    CAS  Google Scholar 

  14. J.D. Benson, A.J. Stoltz, J.B. Varesi, M. Martinka, A.W. Kaleczyc, L.A. Almeida, P.R. Boyd, and J.H. Dinan, J. Electron. Mater., 33, 543 (2004).

    Article  CAS  Google Scholar 

  15. E.P.G. Smith, et al, J. Electron. Mater. 32, 821 (2003).

    Article  CAS  Google Scholar 

  16. R.E. Hollingsworth, C. DeHart, J.N. Li Wang, Johnson, J.D. Benson, and J.H. Dinan, J. Electron. Mater. 27, 689 (1998).

    Article  CAS  Google Scholar 

  17. C. Herring, Phys. Rev. 82, 87 (1951).

    Article  CAS  Google Scholar 

  18. N.C. Bartlet, E.D. Williams, R.J. Phaneuf, Y. Yang, and S. Das Sarma, J. Vac. Sci. Technol. A7, 1898 (1989).

    Google Scholar 

  19. D. Kandel and J.D. Weeks, Phys. Rev. Lett. 74, 3632 (1995).

    Article  CAS  Google Scholar 

  20. J.L. Lin, D.Y. Petrovykh, J. Viernow, F.K. Men, D.J. Seo, and F.J. Himpsel, J. Appl. Phys. 84, 255 (1998).

    Article  CAS  Google Scholar 

  21. E. Bauser, M. Frik, K.S. Loechner, L. Schmidt, and R. Ulrich, J. Cryst. Growth 27, 148 (1974).

    Article  CAS  Google Scholar 

  22. R.H. Saul and D.D. Roccasecca, J. Appl. Phys. 44, 1983 (1973).

    Article  CAS  Google Scholar 

  23. T. Kimoto, A. Itoh, H. Matsunami, and T. Okano, J. Appl. Phys. 81, 3494 (1997).

    Article  CAS  Google Scholar 

  24. S. Yoshida, T. Sekiguchi, and K.M. Itoh, Appl. Phys. Lett. 87, 31903 (2005).

    Article  Google Scholar 

  25. E.D. Williams and N.C. Bartelt, Science 251, 393 (1991).

    Article  Google Scholar 

  26. A.A. Chernov, J.J. De Yoreo, L.N. Rashkovich, and P.G. Vekilov, MRS Bull. 29, 927 (2004).

    CAS  Google Scholar 

  27. D. Martrou, J. Eymery, P. Gentile, and N. Magnea, J. Cryst. Growth 184/185, 203 (1998).

    CAS  Google Scholar 

  28. D. Martrou and N. Magnea, Thin Solid Films 367, 48 (2000).

    Article  CAS  Google Scholar 

  29. S.P. Tobin, F.T.J. Smith, P.W. Norton, J. Wu, M. Dudley, D. Di Marzio, and L.G. Casagrande, J. Electron. Mater. 24, 1189 (1995).

    CAS  Google Scholar 

  30. D.R. Rhiger, S. Sen, J.M. Peterson, H. Chung, and M. Dudley, J. Electron. Mater. 26, 515 (1997).

    CAS  Google Scholar 

  31. D.F. Mitchell, K.B. Clark, J.A. Bardwell, W.N. Leonard, G.R. Massoumi, and I.V. Mitchell, Surf. Interface Anal. 21, 44 (1994).

    Article  CAS  Google Scholar 

  32. Mean free path was calculated from QUASES-IMFP-TPP2M Code written by S. Tougaard from the TPP2M formula in S. Tanuma, C. J. Powell, D. R. Penn, Surf. Interface Anal. 21, 165 (1993).

    Article  Google Scholar 

  33. B. Fischer, E. Bauser, P.A. Sullivan, and D.L. Rode, Appl. Phys. Lett. 33, 78 (1978).

    Article  CAS  Google Scholar 

  34. T. Nishinaga, T. Kazuno, T. Tanbo, J. Koide, K. Pak, T. Nakamura, and Y. Yasuda, J. Cryst. Growth 65, 607 (1983).

    Article  CAS  Google Scholar 

  35. K. Pak, T. Nishinaga, T. Tanbo, H. Fukuhara, T. Nakamura, and Y. Yasuda, Jpn. J. Appl. Phys. 24, 299 (1985).

    Article  CAS  Google Scholar 

  36. S.L. Price, H.L. Hettich, S. Sen, M.C. Currie, D.R. Rhiger, and E.O. McLean, J. Electron. Mater. 27, 564 (1998).

    Article  CAS  Google Scholar 

  37. I. Hahnert and M. Schenk, J. Cryst. Growth 101, 251 (1990).

    Article  Google Scholar 

  38. A.N. Danilewsky, Y. Okamoto, K.W. Benz, and T. Nishinaga, Jpn. J. Appl. Phys. 31, 2195 (1992).

    Article  CAS  Google Scholar 

  39. K. Stubbe and W.P. Gomes, J. Electrochem. Soc. 140, 3294 (1993).

    Article  Google Scholar 

  40. R. Nötzel, L. Däweritz, and K. Ploog, Phys. Rev. B 46, 4736 (1992).

    Article  Google Scholar 

  41. D.W. Pashley, J.H. Neave, and B.A. Joyce, Surf. Sci. 476, 35 (2001).

    Article  CAS  Google Scholar 

  42. A.J. Stoltz, Jr., J.D. Benson, P.R. Boyd, J.B. Varesi, M. Martinka, A.W. Kaleczyc, E.P. Smith, S.M. Johnson, W.A. Radford, and J.H. Dinan, J. Electron. Mater. 32, 692 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benson, J.D., Varesi, J.B., Stoltz, A.J. et al. Surface structure of (111)A HgCdTe. J. Electron. Mater. 35, 1434–1442 (2006). https://doi.org/10.1007/s11664-006-0280-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-006-0280-0

Key words

Navigation