Log in

Growth of InGaN HBTs by MOCVD

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The design and growth of GaN/InGaN heterojunction bipolar transistors (HBTs) by metalorganic chemical vapor deposition (MOCVD) are studied. Atomic-force microscopy (AFM) images of p+InGaN base layers (∼100 nm) deposited under various growth conditions indicate that the optimal growth temperature is limited to the range between 810 and 830°C due to a trade-off between surface roughness and indium incorporation. At these temperatures, the growth pressure must be kept above 300 Torr in order to keep surface pit density under control. An InGaN graded-composition emitter is adopted in order to reduce the number of V-shaped defects, which appear at the interface between GaN emitter and InGaN base and render an abrupt emitter-base heterojunction nearly impossible. However, the device performance is severely limited by the high p-type base contact resistance due to surface etching damage, which resulted from the emitter mesa etch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Makimoto, K. Kumakura, and N. Kobayashi, Appl. Phys. Lett. 79 380 (2001).

    Article  CAS  ADS  Google Scholar 

  2. T. Makimoto, K. Kumakura, and N. Kobayashi, Phys. Status Solidi 188, 183 (2001) (a).

    Article  CAS  ADS  Google Scholar 

  3. T. Makimoto, K. Kumakura, and N. Kobayashi, Appl. Phys. Lett. 83, 1035 (2002).

    Article  CAS  Google Scholar 

  4. T. Makimoto, Y. Yamauchi, and K. Kumakura, Appl. Phys. Lett. 84, 1964 (2004).

    Article  CAS  ADS  Google Scholar 

  5. L.S. McCarthy, P. Kozodoy, M.J.W. Rodwell, S.P. DenBaars, and U.K. Mishra, IEEE Electron Devices Lett. 20, 277 (1999).

    Article  CAS  Google Scholar 

  6. J.J. Huang, M. Hattendorf, M. Feng, D.J.H. Lambert, B.S. Shelton, M.M. Wong, U. Chowdhury, T.G. Zhu, H.K. Kwon, and R.D. Dupuis, IEEE Electron Devices Lett. 22, 157 (2001).

    Article  CAS  Google Scholar 

  7. T. Makimoto, K. Kumakura, and N. Kobayashi, J. Cryst. Growth 221, 350 (2000).

    Article  CAS  Google Scholar 

  8. K. Kumakura, T. Makimoto, and N. Kobayashi, Jpn. J. Appl. Phys. 39, L337 (2000).

    Google Scholar 

  9. T. Chung, J.-B. Limb, U. Chowdhurry, P. Li, J.-H. Ryou, D. Yoo, D. Zakharov, Z. Lilienthal-Weber, and R.D. Dupuis, Phys. Status Solidi (c) 192, 337 (2005).

    Google Scholar 

  10. H. **ng, D. Jena, M.J.W. Rodwell, and U.K. Mishra, IEEE Electron Devices Lett. 24, 4 (2003).

    Article  CAS  Google Scholar 

  11. H. **ng, P.M. Chavarkar, S. Keller, S.P. DenBaars, and U.K. Mishra, IEEE Electron Devices Lett. 24, 141 (2003).

    Article  CAS  Google Scholar 

  12. L.S. McCarthy, P. Kozodoy, M.J.W. Rodwell, S.P. DenBaars, and U.K. Mishra, IEEE Electron Devices Lett. 20, 277 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, T., Limb, J., Ryou, JH. et al. Growth of InGaN HBTs by MOCVD. J. Electron. Mater. 35, 695–700 (2006). https://doi.org/10.1007/s11664-006-0123-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-006-0123-z

Key words

Navigation