Log in

Investigating the RTA Treatment of Ohmic Contacts to n-Layers of Heterobipolar Nanoheterostructures

  • TECHNOLOGICAL PROCESSES AND ROUTES
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The preparation of ohmic contacts to heterobipolar nanostructures has a number of characteristic features. In addition to the basic requirement of minimizing contact resistance, contacts to this type of structures have a transition layer whose depth of penetration must not exceed the emitter layer’s thickness, due to the possibility of short-circuiting the emitter base pn junction. In this work, the effect the main technological parameters of rapid thermal annealing have on a contact’s characteristics are examined, and the process of obtaining a low-resistance ohmic contact to heterobipolar transistor layers is optimized. Ohmic contacts to the n-layers of heterobipolar nanoheterostructures based on gallium arsenide and produced via layer-by-layer electron-beam deposition of Ge/Au/Ni/Au are considered. The diffusion distribution profiles of do** with Ge impurities are calculated as a function of the time and temperature of rapid thermal annealing, and are examined via scanning electron microscopy. It is found that rapid thermal annealing for 60 s at a temperature of 398°C yields ohmic contacts with low resistance, smooth surface morphology, and the minimum size of the transition layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. Iliadis and K. E. Singer, Solid State Commun. 49, 99 (1984).

    Article  ADS  Google Scholar 

  2. L. C. Wang, S. S. Lau, E. K. Hsieh, and J. R. Velebir, Appl. Phys. Lett. 54, 2677 (1989).

    Article  ADS  Google Scholar 

  3. K. A. Jones, E. H. Linfield, and J. E. F. Frost, Appl. Phys. Lett. 69, 4197 (1996).

    Article  ADS  Google Scholar 

  4. T.-J. Kim and P. H. Holloway, Crit. Rev. Solid State Mater. Sci. 22, 239 (1997).

    Article  ADS  Google Scholar 

  5. H.-Ch. Lin, S. Senanayake, and K.-Y. Cheng, IEEE Trans. Electron Dev. 50, 880 (2003).

    Article  ADS  Google Scholar 

  6. E. J. Koop, M. J. Iqbal, F. Limbach, et al., Semicond. Sci. Technol. 28, 1 (2013).

    Article  Google Scholar 

  7. K. Sarma, J. Appl. Phys. 56, 2703 (1984).

    Article  ADS  Google Scholar 

  8. E. Nebauer and M. Trapp, Phys. Status Solidi A 84, 39 (1984).

    Article  ADS  Google Scholar 

  9. R. P. Gupta and W. S. Khokle, Solid State Electron. 28, 823 (1985).

    Article  ADS  Google Scholar 

  10. V. Egorkin, V. Zemlyakov, A. Nezhentsev, and V. Garmash, Russ. Microelectron. 44, 1 (2017).

    Google Scholar 

  11. M. S. Shur, GaAs Devices and Circuits (Springer Science, New York, 2013).

    Google Scholar 

  12. A. Christou, Solid State Electron. 22, 141 (1979).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the RF Ministry of Education and Science, contract no. 14.578.21.0212, unique identifier RFMEFI57816X0212.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Egorkin.

Additional information

Translated by M. Tagirdzhanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egorkin, V.I., Zemlyakov, V.E., Nezhentsev, A.V. et al. Investigating the RTA Treatment of Ohmic Contacts to n-Layers of Heterobipolar Nanoheterostructures. Semiconductors 52, 1969–1972 (2018). https://doi.org/10.1134/S1063782618150046

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782618150046

Keywords:

Navigation