Log in

Study on the Motion Behavior of Inclusion Clusters at the Steel–Slag Interface

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The separation of inclusions at the steel–slag interface is one of the crucial steps in the removal of inclusions. Thus, it is important to study the motion behavior of inclusions at the steel–slag interface to improve the cleanliness of molten steel. In this paper, irregular inclusion clusters with various morphology were fabricated by three-dimensional printing technology. The molten steel and slag were, respectively, simulated with water and silicone oil, according to the similarity principle, and the physical simulation model of inclusions movement at the steel–slag interface was established. The calculation program for calculating the force and moment of inclusion clusters was developed by ourselves based on the user-defined function in FLUENT, and the three-dimensional dynamic numerical simulation of inclusion clusters was carried out by combining dynamic mesh and overset mesh technology. The motion behavior and movement phenomenon of inclusion clusters at the interface is analyzed. The results show that the inclusion cluster produces the liquid film, flips and slips when separating at the interface. The factors influencing the separation of inclusion clusters at the interface are clarified, which indicates that the fractal dimension and the diameter together govern the motion behavior of the inclusion cluster at the interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. B.A. Webler and P.C. Pistorius: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 2437–52.

    Article  Google Scholar 

  2. Y. Ren, Y. Wang, S. Li, L. Zhang, X. Zuo, S.N. Lekakh, and K. Peaslee: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1291–1303.

    Article  Google Scholar 

  3. L. Zhang and B.G. Thomas: XXIV National Steelmaking Symposium, The Morelia Institute of Technology, Morelia, 2003, p. 138.

  4. M. Söder: Growth and Removal of Inclusions During Ladle Stirring, PhD thesis (in Sweden), KTH, 2001.

  5. P. Väyrynen, S. Wang, S. Louhenkilpi, and L. Holappa: in Proceedings of the Materials Science and Technology, Pittsburgh, 2009, pp. 25–29.

  6. U. Zerbst, M. Madia, C. Klinger, D. Bettge, and Y. Murakami: Eng. Fail. Anal., 2019, vol. 98, pp. 228–39.

    Article  CAS  Google Scholar 

  7. Y. Payandeh and M. Soltanieh: J. Iron Steel Res. Int., 2007, vol. 14, pp. 39–46.

    Article  CAS  Google Scholar 

  8. J. Campbell: The Mechanisms of Metallurgical Failure: On the Origin of Fracture, Butterworth-Heinemann, Birmingham, 2020.

    Google Scholar 

  9. A.L.V. da Costa e Silva: J. Mater. Res. Technol., 2018, vol. 7, pp. 283–99.

  10. S.H. Lee, C. Tse, K.W. Yi, P. Misra, V. Chevrier, C. Orrling, S. Sridhar, and A.W. Cramb: J. Non-Cryst. Solids, 2001, vol. 282, pp. 41–48.

    Article  CAS  Google Scholar 

  11. W. Yang, H. Duan, L. Zhang, and Y. Ren: JOM, 2013, vol. 65, pp. 1173–80.

    Article  CAS  Google Scholar 

  12. M. Suzuki, R. Yamaguchi, K. Murakami, and M. Nakada: ISIJ Int., 2001, vol. 41, pp. 247–56.

    Article  CAS  Google Scholar 

  13. M. Cournil, F. Gruy, P. Gardin, and H. Saint-Raymond: Status Solidi A, 2002, vol. 189, pp. 159–68.

    Article  CAS  Google Scholar 

  14. J. Wang, L. Zhang, Y. Zhang, Q. Ren, and H. Duan: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 2831–36.

    Article  Google Scholar 

  15. Q. Tian, G. Wang, D. Shang, H. Lei, X. Yuan, Q. Wang, and J. Li: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 3137–50.

    Article  Google Scholar 

  16. C. Xuan, A.V. Karasev, and P.G. Jönsson: ISIJ Int., 2016, vol. 56, pp. 1204–09.

    Article  CAS  Google Scholar 

  17. B.H. Reis, W.V. Bielefeldt, and A.C.F. Vilela: J. Mater. Res. Technol., 2014, vol. 3, pp. 179–85.

    Article  CAS  Google Scholar 

  18. D. You, C. Bernhard, A. Mayerhofer, and S.K. Michelic: ISIJ Int., 2021, vol. 61, pp. 2991–97.

    Article  CAS  Google Scholar 

  19. B.H. Reis, W.V. Bielefeldt, and A.C.F. Vilela: ISIJ Int., 2014, vol. 54, pp. 1584–91.

    Article  CAS  Google Scholar 

  20. K. Nakajima and K. Okamura: in Proceedings of 4th International Conference on Molten Slags and Fluxes, ISIJ, Tokyo, 1992, p. 505.

  21. J. Strandh, K. Nakajima, R. Eriksson, and P. Jönsson: ISIJ Int., 2005, vol. 45, pp. 1597–1606.

    Article  CAS  Google Scholar 

  22. J. Strandh, K. Nakajima, R. Eriksson, and P. Jönsson: ISIJ Int., 2005, vol. 45, pp. 1838–47.

    Article  CAS  Google Scholar 

  23. M. Valdez, G.S. Shannon, and S. Sridhar: ISIJ Int., 2006, vol. 46, pp. 450–57.

    Article  CAS  Google Scholar 

  24. A.B. Fox, M.E. Valdez, J. Gisby, R.C. Atwood, P.D. Lee, and S. Sridhar: ISIJ Int., 2004, vol. 44, pp. 836–45.

    Article  CAS  Google Scholar 

  25. C. Liu, S. Yang, J. Li, L. Zhu, and X. Li: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 1882–92.

    Article  Google Scholar 

  26. S. Yang, J. Li, C. Liu, L. Sun, and H. Yang: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 2453–63.

    Article  Google Scholar 

  27. S. Yang, W. Liu, and J. Li: JOM, 2015, vol. 67, pp. 2993–3001.

    Article  Google Scholar 

  28. W. Liu, J. Liu, H. Zhao, S. Yang, and J. Li: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 2430–40.

    Article  Google Scholar 

  29. ANSYS 21.0 help: ANSYS Inc., Pittsburgh, 2020.

  30. L. Gmachowski: Colloids Surf. Physicochem. Eng. Asp., 2000, vol. 170, pp. 209–16.

    Article  CAS  Google Scholar 

  31. H. Yang: Study on the movement behavior of inclusions through the steel slag interface, PhD thesis (in Bei**g), USTB, 2014.

  32. S. Neumann, A. Asad, and R. Schwarze: Adv. Eng. Mater., 2020, vol. 22, p. 1900658.

    Article  CAS  Google Scholar 

  33. Y. Yin, J. Zhang, S. Lei, and Z. Wang: High Temp. Mater. Process., 2018, vol. 37, pp. 375–86.

    Article  Google Scholar 

  34. R.J. Good and L.A. Girifalco: J. Phys. Chem., 1960, vol. 64, pp. 561–65.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51704052) and the Venture & Innovation Support Program for Chongqing Overseas Returnees (cx2019026). In addition, we would also like to thank the assistance of the Financial Support from the Tangshan Science and Technology Bureau for the Fundamental Innovation Team of High-Quality Clean Steel in Tangshan (21130209D) and Hebei Financial Support Project for the Introduced Overseas Student (C20210309).

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Li or Min Tan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Cui, H., Li, T. et al. Study on the Motion Behavior of Inclusion Clusters at the Steel–Slag Interface. Metall Mater Trans B 54, 101–114 (2023). https://doi.org/10.1007/s11663-022-02673-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02673-5

Navigation