Log in

Effect of Diffusion Length in Modeling of Equiaxed Dendritic Solidification under Buoyancy Flow in a Configuration of Hebditch–Hunt Experiment

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Modeling of equiaxed solidification is vital for understanding the solidification process of metallic alloys. In this work, an extended literature review is given for the models currently used for equiaxed solidification simulations. Based on this analysis, we present a three-phase multiscale equiaxed solidification model in which some approximations regarding solute transport at microscopic scale are put together in a new way and incorporated into macroscopic transport equations. For the latter, a term relating to the momentum exchange between the two phases is revised, and a modification for the grain packing algorithm is proposed. A modernized model for equiaxed dendrite growth is tested using a case of solidification of Sn-5 wt pct Pb alloy in a parallelepiped cavity that mimics the Hebditch–Hunt experiment. The results obtained using two approaches to calculate diffusion length are presented and compared both with each other and with numerical results from elsewhere. It is demonstrated that diffusion length has a crucial effect on the final segregation pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

\( c_{i} \) :

Solute concentration in i-phase (wt pct)

\( S_{\rm e}^{J} \) :

Diffusion surface concentration of the grain phase (\( {\text{m}}^{ - 1} \))

\( c_{\rm mix} \) :

Mix solute concentration (wt pct)

t :

Time (s)

\( c_{\rm eut} \) :

Eutectic concentration (wt pct)

\( T \) :

Temperature (K)

\( c_{\rm l}^{\ast} , c_{\rm s}^{\ast} \) :

Equilibrium concentration at f–s or d–s interface (wt pct)

\( T_{\rm eut} \) :

Eutectic temperature (K)

\( c_{\rm env} \) :

Concentration at l–d interface (wt pct)

\( T_{0} \) :

Initial temperature (K)

\( c_{\rm p}^{i} \) :

Specific heat for i-phase (\( {\text{J kg}}^{ - 1} {\text{K}}^{ - 1} \))

\( {\Updelta}T \) :

Constitutional undercooling (K)

\( c_{0} \) :

Initial concentration (wt pct)

\( {{\Updelta }}T_{\rm nucl} \) :

Nucleation temperature (K)

\( d_{\rm e} , d_{\rm s} \) :

Grain diameter (m)

\( \vec{u}_{i} \) :

Velocity vector of i-phase (\( {\text{m s}}^{ - 1} \))

\( D_{\rm l} \) :

Diffusion coefficient in liquid (\( {\text{m}}^{2} {\text{s}}^{ - 1} \))

\( \vec{U}_{ij}^{D} \) :

Momentum transfer rate from i-phase to j-phase (\( {\text{kg m}}^{ - 2} {\text{s}}^{ - 2} \))

\( f_{i} \) :

Volume fraction of i-phase (1)

\( v_{\rm env} \) :

Envelope growth velocity (\( {\text{m s}}^{ - 1} \))

\( f_{\rm p}^{\rm e} ,f_{\rm p}^{s} \) :

Packing limit fraction (1)

\( v_{\rm ds} \) :

d–s interface growth velocity (\( {\text{m\,s}}^{ - 1} \))

\( f_{\rm s}^{\rm e} \) :

Solid fraction within grains (1)

\( \vec{F}_{\rm Bi} \) :

Buoyancy force of i-phase (\( {\text{kg\,m}}^{ - 2} {\text{s}}^{ - 2} \))

\( h_{i} \) :

Enthalpy of i-phase (\( {\text{J\,kg}}^{ - 1} \))

\( H^{\ast} \) :

Interfacial heat transfer coefficient (\( {\text{W\,m}}^{ - 3} {\text{K}}^{ - 1} \))

J ij :

Species transfer rate from i-phase to j-phase (\( {\text{m\,s}}^{ - 1} \))

k i :

Thermal conductivity for i-phase (\( {\text{W\,m}}^{ - 1} {\text{K}}^{ - 1} \))

k :

Solute partition coefficient (1)

\( K_{ij} \) :

Liquid-equiaxed drag coefficient (\( {\text{kg\,m}}^{ - 3} {\text{s}}^{ - 1} \))

\( l_{i} \) :

Diffusion length of i-phase (m)

L :

Latent heat (\( {\text{J kg}}^{ - 1} \))

m :

Slope of liquidus in phase diagram (K)

\( M_{{{\Upphi }}} \) :

Mass transfer rate from nucleation (\( {\text{kg m}}^{ - 3} {\text{s}}^{ - 1} \))

\( M_{ij} \) :

Mass transfer rate from i-phase to j-phase (\( {\text{kg m}}^{ - 3} {\text{s}}^{ - 1} \))

\( n_{\rm max} \) :

Maximum equiaxed grain density (\( {\text{m}}^{ - 3} \))

n :

Grain number density (\( {\text{m}}^{ - 3} \))

\( N_{{{\Upphi }}} \) :

Nuclei production rate (\( {\text{m}}^{ - 3} {\text{s}}^{ - 1} \))

Re :

Reynolds number (1)

Sh :

Sherwood number (1)

\( S_{\rm e}^{\rm M} \) :

Surface concentration of the equivalent sphere (\( {\text{m}}^{ - 1} \))

\( \vec{u}_{i} \) :

Velocity vector of i-phase (\( {\text{m\,s}}^{ - 1} \))

\( \vec{U}_{ij}^{\rm D} \) :

Momentum transfer rate from i-phase to j-phase (\( {\text{kg\,m}}^{ - 2} \,\text{s}^{-2}\))

\( v_{\rm env} \) :

Envelope growth velocity (\( {\text{m\,s}}^{ - 1} \))

\( v_{\rm ds} \) :

ds interface growth velocity (\( {\text{m\,s}}^{ - 1} \))

\( \beta_{\rm T} \) :

Thermal expansion coefficient (\( {\text{K}}^{ - 1} \))

\( \beta_{\rm c} \) :

Solutal expansion coefficient (1)

\( {\Upphi}_{\text{M}} \) :

Shape factor of dendritic envelope growth (1)

\( {\Upphi}_{\text{J}} \) :

sphericity of dendritic envelope (1)

\( {\Upgamma} \) :

Gibbs Thomson coefficient (m K)

\( \lambda_{2} \) :

Secondary arm spacing (\( {\text{m}} \))

\( \mu_{i} \) :

Viscosity of i-phase (\( {\text{kg m}}^{ - 1} {\text{s}}^{ - 1} \))

\( \rho_{i} \) :

Density of i-phase (\( {\text{kg m}}^{ - 3} \))

\( \rho_{\rm ref} \) :

Reference density (\( {\text{kg m}}^{ - 3} \))

\( \rho_{\rm s}^{b} \) :

Density of solid phase for buoyancy

\( {\Uppsi}_{i} \) :

A intensive medium property (–)

d:

Interdendritic liquid phase

e: d + s:

Exquiaxed grain phase

f: l + d:

Liquid phase

l:

Extradendritic liquid phase

s:

Interdendritic solid phase

References

  1. M. Wu, L. Könözsy, A. Ludwig, W. Schützenhöfer, and R. Tanzer: Steel Res. Int., 2008, vol. 79, pp. 637–44.

    Article  CAS  Google Scholar 

  2. M. Wu, A. Ludwig, and A. Kharicha: Metals (Basel)., 2019, vol. 9, p. 229.

    Article  Google Scholar 

  3. P. Thévoz, J.L. Desbiolles, and M. Rappaz: Metall. Trans. A, 1989, vol. 20, pp. 311–22.

    Article  Google Scholar 

  4. N. Leriche, H. Combeau, C.A. Gandin, and M. Založnik: IOP Conf. Ser. Mater. Sci. Eng., 2015, vol. 84, pp. 1–8.

    Article  Google Scholar 

  5. A.I. Ciobanas and Y. Fautrelle: J. Phys. D. Appl. Phys., 2007, vol. 40, pp. 3733–62.

    Article  CAS  Google Scholar 

  6. A.I. Ciobanas and Y. Fautrelle: J. Phys. D. Appl. Phys., 2007, vol. 40, pp. 4310–36.

    Article  CAS  Google Scholar 

  7. C.Y. Wang and C. Beckermann: Metall. Mater. Trans. A, 1993, vol. 24, pp. 2787–802.

    Article  CAS  Google Scholar 

  8. Y. Zheng, M. Wu, E. Karimi-Sibaki, A. Kharicha, and A. Ludwig: Int. J. Heat Mass Transf., 2018, vol. 122, pp. 939–53.

    Article  CAS  Google Scholar 

  9. R. Ananth and W.N. Gill: J. Cryst. Growth, 1988, vol. 91, pp. 587–98.

    Article  CAS  Google Scholar 

  10. D. V. Alexandrov and P.K. Galenko: Uspekhi Fiz. Nauk, 2014, vol. 184, pp. 833–50.

    Article  Google Scholar 

  11. J. Lipton, M.E. Glicksman, and W. Kurz: Mater. Sci. Eng., 1984, vol. 65, pp. 57–63.

    Article  CAS  Google Scholar 

  12. B. Appolaire, H. Combeau, and G. Lesoult: Mater. Sci. Eng. A, 2008, vol. 487, pp. 33–45.

    Article  Google Scholar 

  13. C.Y. Wang and C. Beckermann: Metall. Mater. Trans. A, 1996, vol. 27, pp. 2754–64.

    Article  CAS  Google Scholar 

  14. M. Rappaz and P.H. Thévoz: Acta Metall., 1987, vol. 35, pp. 2929–33.

    Article  CAS  Google Scholar 

  15. M. Wu, A. Ludwig, A. Bührig-Polaczek, M. Fehlbier, and P.R. Sahm: Int. J. Heat Mass Transf., 2003, vol. 46, pp. 2819–32.

    Article  CAS  Google Scholar 

  16. M. Založnik and H. Combeau: Comput. Mater. Sci., 2010, vol. 48, pp. 1–10.

    Article  Google Scholar 

  17. J. Ni and C. Beckermann: J. Mater. Process. Manuf. Sci., 1993, vol. 2, pp. 217–31.

    CAS  Google Scholar 

  18. J. Ni and C. Beckermann: Metall. Trans. B, 1991, vol. 22, pp. 349–61.

    Article  CAS  Google Scholar 

  19. A. Badillo, D. Ceynar, and C. Beckermann: J. Cryst. Growth, 2007, vol. 309, pp. 216–24.

    Article  CAS  Google Scholar 

  20. R.B. Bird, W.E. Stewart, and E.N. Lightfoot: Transport Phenomena, Wiley, New York, 1960.

  21. A. Ludwig and M. Wu: Metall. Mater. Trans. A, 2002, vol. 33, pp. 3673–83.

    Article  CAS  Google Scholar 

  22. M. Wu and A. Ludwig: Acta Mater., 2009, vol. 57, pp. 5632–44.

    Article  CAS  Google Scholar 

  23. J. Happel: AIChE J., 1958, vol. 4, pp. 197–201.

    Article  CAS  Google Scholar 

  24. A. Plotkowski and M.J.M. Krane: Appl. Math. Model., 2016, vol. 40, pp. 9212–27.

    Article  Google Scholar 

  25. D. Jiang and M. Zhu: Metall. Mater. Trans. B, 2016, vol. 47, pp. 3446–58.

    Article  CAS  Google Scholar 

  26. M.A. Martorano and V.B. Biscuola: Model. Simul. Mater. Sci. Eng., 2006, vol. 14, pp. 1225–43.

    Article  CAS  Google Scholar 

  27. M. Torabi Rad, M. Založnik, H. Combeau, and C. Beckermann: Materialia, 2019, vol. 5, p. 100231.

  28. D. Jiang and M. Zhu: Metall. Mater. Trans. B, 2017, vol. 48, pp. 444–55.

    Article  Google Scholar 

  29. M.J.M. Krane: Appl. Math. Model., 2004, vol. 28, pp. 95–107.

    Article  Google Scholar 

  30. A. Olmedilla, M. Založnik, T. Messmer, B. Rouat, and H. Combeau: Phys. Rev. E, 2019, vol. 99, p. 12907.

    Article  CAS  Google Scholar 

  31. A. Olmedilla, M. Založnik, B. Rouat, and H. Combeau: Phys. Rev. E, 2018, vol. 97, p. 012910.

    Article  CAS  Google Scholar 

  32. D.J. Hebditch and J.D. Hunt: Met. Trans, 1974, vol. 5, pp. 1557–64.

    Article  CAS  Google Scholar 

  33. N. Ahmad, J. Rappaz, J.-L. Desbiolles, T. Jalanti, M. Rappaz, H. Combeau, G. Lesoult, and C. Stomp: Metall. Mater. Trans. A, 1998, vol. 29, pp. 617–30.

    Article  CAS  Google Scholar 

  34. A. Kumar, B. Dussoubs, M. Založnik, and H. Combeau: J. Phys. D. Appl. Phys., 2009, vol. 42, p. 105503.

    Article  Google Scholar 

  35. T.-T.-M. Nguyen, C.-A. Gandin, H. Combeau, M. Založnik, and M. Bellet: Metall. Mater. Trans. A, 2018, vol. 49, pp. 1725–48.

    Article  Google Scholar 

  36. M. Založnik, A. Kumar, and H. Combeau: Comput. Mater. Sci., 2010, vol. 48, pp. 11–21.

    Article  Google Scholar 

  37. A. Plotkowski and M.J.M. Krane: Comput. Mater. Sci., 2016, vol. 124, pp. 238–48.

    Article  Google Scholar 

  38. A. Plotkowski and M.J.M. Krane: Int. J. Heat Mass Transf., 2016, vol. 100, 918–26.

  39. R. Boussaa, L. Hachani, O. Budenkova, V. Botton, D. Henry, K. Zaidat, H. Ben Hadid, and Y. Fautrelle: Int. J. Heat Mass Transf., 2016, vol. 100, pp. 680–90.

  40. T. Carozzani, C.-A. Gandin, H. Digonnet, M. Bellet, K. Zaidat, and Y. Fautrelle: Metall. Mater. Trans. A, 2013, vol. 44, pp. 873–87.

    Article  Google Scholar 

Download references

Acknowledgments

This work is a joint cooperation between the SIMAP laboratory of Grenoble INP (France) and the Key Laboratory of EPM of Northeastern University (P. R. China). The authors gratefully acknowledge financial support from the National Nature Science Foundation of China (Grant No. U1760206), the National Key R&D Program of China (Grant No. 2017YFE0107900), the Project of Introducing Talents of Discipline Innovation to Universities 2.0 (the 111 Project of China 2.0, No. BP0719037), and China Scholarship Council (No. 201706080074). The SIMAP laboratory acknowledges the financial support provided by the ESA-MAP MICAST Project Contract 14347/01/NL/SH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Engang Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 30, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Semenov, S., Wang, E. et al. Effect of Diffusion Length in Modeling of Equiaxed Dendritic Solidification under Buoyancy Flow in a Configuration of Hebditch–Hunt Experiment. Metall Mater Trans B 50, 3039–3054 (2019). https://doi.org/10.1007/s11663-019-01703-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-019-01703-z

Navigation