Log in

Center Segregation with Final Electromagnetic Stirring in Billet Continuous Casting Process

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

With a multiphase solidification model built, the effect of F-EMS parameters on center segregation was investigated in 160 mm × 160 mm billet continuous casting process. In the model, the initial growth of equiaxed grains which could move freely with liquid was treated as slurry, while the coherent equiaxed zone was regarded as porous media. The results show that the stirring velocity is not the main factor influencing center segregation improvement, which is more affected by current intensity and stirring pool width. Because solute transport is controlled by solidification rate as stirring pool width is 73 mm, center segregation declines continuously with current intensity increasing. As liquid pool width decreases to 61 mm and less latent heat needs to dissipate in the later solidification, the center segregation could be improved more obviously by F-EMS. Due to center liquid solute enrichment and liquid phase accumulation in the stirring zone, center segregation turns to rise reversely with higher current intensity and becomes more serious with stirring pool width further decreasing to 43 mm. As the stirring pool width is 25 mm, the positive segregation has already formed and solute could still concentrate with weak stirring, leading to center segregation deterioration. With the optimized current intensity (400 A) and stirring pool width (61 mm) set for continuous mode, center segregation improvement is better than that of alternative mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. C. Beckermann: Int. Mater. Rev., 2002, vol. 47, pp. 243-61.

    Article  Google Scholar 

  2. D.G. Eskin, R. Nadella, and L. Katgerman: Acta Mater., 2008, vol. 56, pp. 1358-65.

    Article  Google Scholar 

  3. K.S. Oh and Y.W. Chang: ISIJ Int., 1995, vol. 35, pp. 866-75.

    Article  Google Scholar 

  4. H. Mizukami, M. Komatsu, T. Kitagawa, and K. Kawakami: Trans. Iron Steel Inst. Jpn., 1984, vol. 24, pp. 923-30.

    Article  Google Scholar 

  5. K. Ayata, T. Mori, T. Fujimoto, T. Ohnishi, and I. Wakasugi: Trans. Iron Steel Inst. Jpn., 1984, vol. 24, pp. 931-39.

    Article  Google Scholar 

  6. K. Suzuki, Y. Shinsho, K. Murata, K. Nakanishi, and M. Kodama: Trans. Iron Steel Inst. Jpn., 1984, vol. 24, pp. 940-49.

    Article  Google Scholar 

  7. W.D. Du, K. Wang, C.J. Song, H.G. Li, M.W. Jiang, Q.J. Zhai, and P. Zhao: Ironmaking & Steelmaking, 2008, vol. 35, pp. 153-56.

    Article  Google Scholar 

  8. S. Luo, F. Piao, D.B. Jiang, and M.Y. Zhu: J. Iron Steel Res. Int., 2014, vol. 21, pp. 51-55.

    Article  Google Scholar 

  9. B.Z. Ren, D.F. Chen, H.D. Wang, M.J. Long, and Z.W. Han: Ironmaking & Steelmaking, 2015, vol. 42, pp. 401-08.

    Article  Google Scholar 

  10. H. Sun and J. Zhang: Metall. Mater. Trans. B, 2014, vol. 45, pp. 1133-49.

    Article  Google Scholar 

  11. M. Wu and A. Ludwig: Metall. Mater. Trans. A, 2006, vol. 37, pp. 1613-31.

    Article  Google Scholar 

  12. D.B. Jiang and M.Y. Zhu: Metall. Mater. Trans. B, in press.

  13. S.I. Chung, Y.H. Shin, and J.K. Yoon: ISIJ Int., 1992, vol. 32, pp. 1287-96.

    Article  Google Scholar 

  14. M. Wu, A. Fjeld, and A. Ludwig: Comput. Mater. Sci., 2010, vol. 50, pp. 32-42.

    Article  Google Scholar 

  15. M.C. Schneider and C. Beckermann: ISIJ Int., 1995, vol. 35, pp. 665-72.

    Article  Google Scholar 

  16. S. Luo, M.Y. Zhu, and S. Louhenkilpi: ISIJ Int., 2012, vol. 52, pp. 823-30.

    Article  Google Scholar 

  17. S.E. Perez-Fontes and H.Y. Sohn: Metall. Mater. Trans. B, 2012, vol. 43, pp. 413-23.

    Article  Google Scholar 

  18. A. Ludwig and M. Wu: Metall. Mater. Trans. A, 2002, vol. 33, pp. 3673-83.

    Article  Google Scholar 

  19. C.Y. Wang, S. Ahuja, C. Beckermann, and H.C. Groh. Metall. Mater. Trans. B, 1995, vol. 26, pp. 111-19.

    Article  Google Scholar 

  20. D.B. Jiang and M.Y. Zhu: Steel Res. Int., 2015, vol. 86, pp. 993-03.

    Article  Google Scholar 

  21. C. Vives: Metall. Trans. B, 1992, vol. 23, pp. 189-06.

    Article  Google Scholar 

  22. T. Kajatani, J.M. Drezet, and M. Rappaz: Metall. Mater. Trans. A, 2001, vol. 32, pp. 1479-91.

    Article  Google Scholar 

Download references

Acknowledgments

The authors sincerely acknowledge the financial support of the National Natural Science Foundation of China No. U1560208, and the Outstanding Talent Cultivation Project of Liaoning Province No. 2014029101.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miaoyong Zhu.

Additional information

Manuscript submitted July 17, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, D., Zhu, M. Center Segregation with Final Electromagnetic Stirring in Billet Continuous Casting Process. Metall Mater Trans B 48, 444–455 (2017). https://doi.org/10.1007/s11663-016-0864-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0864-x

Keywords

Navigation