Log in

The Role of Submerged Entry Nozzle Port Shape on Fluid Flow Turbulence in a Slab Mold

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The fluid flow of liquid steel in a wide slab mold (1880 × 230 mm) influenced by two different submerged entry nozzle (SEN) designs (bifurcated nozzles with rectangular, SEN-R, vs square, SEN-S, ports) and immersion depths of 115 and 185 mm was studied using a 1:1 scale water model. To analyze the fluid dynamics, particle image velocimetry and video recording techniques were used. The fluid-flow dynamics indicate that the discharging jets using either SEN design suffer strong wandering and raveling effects that enhance turbulence in the meniscus region. The preceding results show the existence of velocity spikes (defined as velocities with magnitudes that exceed the standard deviation of the average velocity) in the submeniscus region. Using the SEN-R ports yields more velocity spikes per minute with larger magnitudes than using the SEN-S, which could be the main cause of the detrimental quality of steel. The capability of slag entrainment by the flow developed by a nozzle was the criterion employed to evaluate quantitatively the merits of one nozzle over the other. This criterion is based on the capillary number, which gives the ratio between viscous-inertial and surface forces at the metal–slag interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

Cacr :

Critical capillary

U mcr :

Horizontal critical metal velocity (m/s)

μ m :

Dynamic viscosity (Pa s)

Γ ms :

Metal–slag interfacial tension (N/m)

h s :

Thickness of liquid slag (m)

μ s :

Slag viscosity (Pa s)

ρ i :

Slag density (kg/m3)

ρ m :

Metal density (kg/m3)

References

  1. P.H. Dauby: Rev. Metall., 2012, vol. 109, pp. 113-36.

    Article  Google Scholar 

  2. Q. Yuang, B.G. Thomas, and S.P. Vanka: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 685-702.

    Article  Google Scholar 

  3. B.G. Thomas, L.M. Mika, and F.M. Najjar: Metall. Trans. B, 1990, vol. 21B, pp. 387-400.

    Article  Google Scholar 

  4. T. Teshima, M. Osame, K. Okimoto, and Y. Mura: 71st Steelmaking Conf. Proc., Iron Steel Soc., 1991, pp. 111–18.

  5. F.M. Najjar, B.G. Thomas, and D.E. Hershey: Metall. Mater. Trans. B, 1995, vol. 26B, pp. 749–65.

    Article  Google Scholar 

  6. F.G. Wilson, M.J. Heesom, A. Nicholson, and A.W.D. Hills: Ironmaking Steelmaking, 1987, vol. 14, pp. 296–309.

    Google Scholar 

  7. H. Nakato, K. Saito, Y Oguchi, N. Namura, and K. Sorimachi: 70 th Steelmaking Conf. Proc., Iron Steel Soc., 1987, pp. 427–31.

  8. S. García-Hernández, R.D. Morales, J. de J. Barreto, and K. Morales-Higa: ISIJ Int., 2013, vol. 53, pp. 1794–802.

  9. M. J. Lu, C.H. Chen, C.H Huang, and J.W. Chu: Steelmaking Conf. Proc., 1998, vol. 8, pp. 193–97.

    Google Scholar 

  10. S. Kunstreich and P.H. Dauby: Ironmaking Steelmaking, 2005, vol. 32, pp. 80–86.

    Article  Google Scholar 

  11. A. Najera Bastida, R.D. Morales, S. García-Hernández, E. Torres Alonso, and A. Espino-Zarate: ISIJ Int., 2010, vol. 50, pp. 830–38.

    Article  Google Scholar 

  12. S. García-Hernández, J. Barreto-Sandoval, R.D. Morales, and H. Arcos-Gutiérrez: ISIJ Int., 2013, vol. 53, pp. 809–17.

    Article  Google Scholar 

  13. A. Nájera-Bastida, R.D. Morales, L. García-Demedices, R. Zárate-Gutiérrez, and J. Rodríguez-Ávila: Steel Res. Int., 2011, vol. 82, pp. 301–12.

    Article  Google Scholar 

  14. R. Chaudhary, C. Ji, B.G. Thomas, and S.P. Vanka: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 987–1007.

    Article  Google Scholar 

  15. J. Anagnostopoulos and G. Bergeles: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 1095–105.

    Article  Google Scholar 

  16. Y. Miki and S. Takeuchi: ISIJ Int., 2003, vol. 43, vol. 1548–55.

    Article  Google Scholar 

  17. A. Ramos-Banderas, Sanchez-Perez, R.D. Morales, Palafox-Ramos, L. Demedices-García, and M. Díaz- Cruz: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 449–60.

  18. Q. Yuan, S. Sivaramakrishnan, S.P. Vanka, and B.G. Thomas: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 967–82.

    Article  Google Scholar 

  19. R. Liu, J. Sengupta, D. Crosbie, M.M. Yavuz, and B.G. Thomas: AISTech 2011 Proceedings, 2011, pp. 1619–31.

  20. K. Takatani, Y. Tanizawa, H. Mizukami, and K. Nishimura: ISIJ Int., 2001, vol. 41, pp. 1252–61.

    Article  Google Scholar 

  21. F.M. Najjar, B.G. Thomas, and D.E. Hershey: Metall. Mater. Trans. B, 1995, vol. 26B, pp. 749–65.

    Article  Google Scholar 

  22. R. Sánchez-Pérez, R.D. Morales, M. Díaz-Cruz, O. Olivares-Xometl, and J. Palafox-Ramos: ISIJ Int., 2003, vol. 43, pp. 637–46.

    Article  Google Scholar 

  23. Y.S. Gutiérrez-Montiel and R.D. Morales: ISIJ Int., 2013, vol. 53, pp. 230–39.

    Article  Google Scholar 

  24. R. Sánchez-Pérez, R.D. Morales, L. García-Demedices, J. Palafox-Ramos, and M. Díaz-Cruz: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 85–99.

    Article  Google Scholar 

  25. I. Calderón-Ramos, R.D. Morales, S. García-Hernández, and A. Ceballos-Huerta: ISIJ Int., 2014, vol. 54, pp. 1797–806.

    Article  Google Scholar 

  26. E. Torres-Alonso, R.D. Morales, S. García-Hernández, and J. Palafox-Ramos: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 583–97.

    Article  Google Scholar 

  27. L.C. Hibbeler and B.G. Thomas: Proc. AISTech2013, ASIT, Warrendale, PA, 2013, pp. 1215–30.

  28. P. Ramirez-Lopez and R.D. Morales: Ironmaking Steelmaking, 2006, vol. 33, pp. 157–68.

    Article  Google Scholar 

  29. P. Ramirez-Lopez, R. D. Morales, R. Sanchez-Perez, O. Davila, and L. Garcia-Demedices: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 787–800.

    Article  Google Scholar 

  30. K.E. Swartz, L.C. Hibbeler, B.P. Joyce, and B.G. Thomas: Proc. AISTech2014, AIST Warrendale, PA, 2014, pp. 1865–79.

  31. J.M. Harman and A.W. Cramb: Proc. 79 th Steelmaking Conf: Iron Steel Soc, 1996, pp. 773-84.

  32. R. Hagemann, R. Schwarze, H.P. Heller, and P.R. Scheller: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 80-90.

    Article  Google Scholar 

  33. R. Striedinger, L.F. Sancho, J. Díaz, M. De Santis, M.R. Ridolfi, A. Poli, A. Bennani, J. Laraudogoitia, J. Ciriza, J. Holzhauser, and L. Ernenputsch: Final Report, European Commission, Brussels, Belgium, 2008, pp. 5–56.

Download references

Acknowledgments

The authors give thanks to CoNaCyT and IPN for a scholarship granted to I.C.R. to carry out his Ph.D. studies at IPN and to the institutions SNI, COFA, and PIFI for their continuous support to the Process Metallurgy Group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismael Calderón-Ramos.

Additional information

Manuscript submitted August 6, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calderón-Ramos, I., Morales, R.D. The Role of Submerged Entry Nozzle Port Shape on Fluid Flow Turbulence in a Slab Mold. Metall Mater Trans B 46, 1314–1325 (2015). https://doi.org/10.1007/s11663-015-0333-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-015-0333-y

Keywords

Navigation