Log in

Three-Dimensional Flow Behavior Inside the Submerged Entry Nozzle

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

According to various authors, the surface quality of steel depends on the dynamic conditions that occur within the continuous casting mold’s upper region. The meniscus, found in that upper region, is where the solidification process begins. The liquid steel is distributed into the mold through a submerged entry nozzle (SEN). In this paper, the dynamic behavior inside the SEN is analyzed by means of physical experiments and numerical simulations. The particle imaging velocimetry technique was used to obtain the vector field in different planes and three-dimensional flow patterns inside the SEN volume. Moreover, large eddy simulation was performed, and the turbulence model results were used to understand the nonlinear flow pattern inside the SEN. Using scaled physical and numerical models, quasi-periodic behavior was observed due to the interaction of two three-dimensional vortices that move inside the SEN lower region located between the exit ports of the nozzle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. D.J. Branagan, J.G. Grant, A.T. Ball, J.K. Walleser, B.E. Meacham, K. Clark, L. Ma, I. Yakubtsov, S. Larish, S. Cheng, T.L. Giddens, A.E. Frerichs, and A.V. Sergueeva: U.S. Patent 20150152534A1, The NanoSteel Company Inc., United States, 2015, pp. 1–73.

  2. G. Nitzl and H. Haslinger: U.S. Patent 8758672B2, Refractory Intellectual Property GMBH & CO. KG, Vienna, AT, 2014, pp. 1–18.

  3. R.C. Hanna and K.J. Teeter: U.S. Patent 8616264B2, Nucor Corporation, 2014, pp 1–17.

  4. Z. Q. Liu, B. K. Li, M. F. Jiang and F. Tsukihashi, ISIJ Int 2013, vol. 53, pp. 484-92.

    Article  Google Scholar 

  5. X. W. Zhang, X. L. **, Y. Wang, K. Deng and Z. M. Ren, ISIJ Int 2011, vol. 51, pp. 581-587.

    Article  Google Scholar 

  6. R. Chaudhary, G. G. Lee, B. G. Thomas and S. H. Kim, Metall Mater Trans B 2008, vol. 39, pp. 870-884.

    Article  Google Scholar 

  7. B. Zhao, B.G. Thomas, S.P. Vanka, and R.J. O’Malley, Metall. Mater. Trans. B, 2005, vol. 36B, pp. 801–823.

    Article  Google Scholar 

  8. K. C. Mills, Metall. Ital., 2017, vol. 15, pp. 38-45.

    Google Scholar 

  9. M. Iguchi, J. Yoshida, T. Shimizu and Y. Mizuno, ISIJ Int 2000, vol. 40, pp. 685-691.

    Article  Google Scholar 

  10. P. Zhao, Q. Li, S. B. Kuang and Z. S. Zou, Metall Mater Trans B 2017, vol. 48, pp. 456-470.

    Article  Google Scholar 

  11. A. Asad, C. Kratzsch and R. Schwarze, Steel Res. Int. 2016, vol. 87, pp. 181-190.

    Article  Google Scholar 

  12. Z. Liu, B. Li and M. Jiang, Metall Mat Trans B Process Metall Mat Process Sci 2014, vol. 45, pp. 675-697.

    Article  Google Scholar 

  13. S. M. Cho, B. G. Thomas and S. H. Kim, Metall Mater Trans B 2016, vol. 47, pp. 3080-3098.

    Article  Google Scholar 

  14. B. G. Thomas, Q. Yuan, S. Mahmood, R. Liu and R. Chaudhary, Metall Mater Trans B 2014, vol. 45, pp. 22-35.

    Article  Google Scholar 

  15. M. Xu and M. Zhu, ISIJ Int 2015, vol. 55, pp. 791-798.

    Article  Google Scholar 

  16. M.H. Zarea, A.H. Meysami, S.H. Mahmoudi, M. Hajisafari, M.M. Atabaki, Orient. J. Chem., 2013, vol. 29, pp. 1325-1337.

    Article  Google Scholar 

  17. Y. Chen, L. Zhang, S. Yang and J. Li, JOM 2012, vol. 64, pp. 1080-1086.

    Article  Google Scholar 

  18. H. Sun and J. Zhang, ISIJ Int 2011, vol. 51, pp. 1657-1663.

    Article  Google Scholar 

  19. M. M. Yavuz, Steel Res. Int. 2011, vol. 82, pp. 809-818.

    Article  Google Scholar 

  20. X. Deng, C. Ji, Y. Cui, L. Li, X. Yin, Y. Yang and A. McLean, Ironmak Steelmak 2017, vol. 44, pp. 461-471.

    Article  Google Scholar 

  21. Q. Fang, H. W. Ni, H. Zhang, B. Wang and Z. A. Lv, Metals-Basel 2017, vol. 7, pp. 1-16.

    Google Scholar 

  22. D. Gupta and A. K. Lahiri, Metall Mater Trans B 1996, vol. 27, pp. 757-764.

    Article  Google Scholar 

  23. Z. Q. Liu, B. K. Li, M. F. Jiang and F. Tsukihashi, ISIJ Int 2014, vol. 54, pp. 1314-1323.

    Article  Google Scholar 

  24. S. Pirker, D. Kahrimanovic and S. Schneiderbauer, Metall Mater Trans B 2015, vol. 46, pp. 953-960.

    Article  Google Scholar 

  25. J. L. Shen, D. F. Chen, X. **e, L. L. Zhang, Z. H. Dong, M. J. Long and X. B. Ruan, Ironmak Steelmak 2013, vol. 40, pp. 263-275.

    Article  Google Scholar 

  26. Z. Wang, K. Mukai and D. Izu, ISIJ Int 1999, vol. 39, pp. 154-163.

    Article  Google Scholar 

  27. B. Greis, R. Bahrmann, A. Rückert and H. Pfeifer, Steel Res. Int. 2015, vol. 86, pp. 1469-1479.

    Article  Google Scholar 

  28. M. Javurek, M. Thumfart and R. Wincor, Steel Res. Int. 2010, vol. 81, pp. 668-674.

    Article  Google Scholar 

  29. Y. J. Jeon, H. J. Sung and S. Lee, Metall Mat Trans B Process Metall Mat Process Sci 2010, vol. 41, pp. 121-130.

    Article  Google Scholar 

  30. V. Singh and S. K. Das, ISIJ Int 2016, vol. 56, pp. 1509-1518.

    Article  Google Scholar 

  31. B. G. Thomas, Metall Mater Trans B 2002, vol. 33, pp. 795-812.

    Article  Google Scholar 

  32. Q. Yuan, S. Sivaramakrishnan, S. P. Vanka and B. G. Thomas, Metall Mater Trans B 2004, vol. 35, pp. 967-982.

    Article  Google Scholar 

  33. R. Kalter, M. J. Tummers, S. Kenjeres, B. W. Righolt and C. R. Kleijn, Int J Heat Fluid Fl 2013, vol. 44, pp. 365-374.

    Article  Google Scholar 

  34. R. Miranda, M. A. Barron, J. Barreto, L. Hoyos and J. Gonzalez, ISIJ Int 2005, vol. 45, pp. 1626-1635.

    Article  Google Scholar 

  35. C. Real, L. Hoyos, F. Cervantes, R. Miranda, M. Palomar-Pardavé, and J. Gonzalez: XVI Congreso sobre métodos numéricos y sus aplicaciones, Córdoba, 2007, pp. 302–17.

  36. C. Real, R. Miranda, C. Vilchis, M. Barron, L. Hoyos and J. Gonzalez, ISIJ Int 2006, vol. 46, pp. 1183-1191.

    Article  Google Scholar 

  37. R. Miranda, M. Barron, A. de Ita, L. Hoyos, and J. Gonzalez: IEEE Industry Applications Society, 2004, pp. 200–207.

  38. F. Rivera-Perez, C. Real-Ramirez, R. Miranda-Tello, R. Hernandez-Santoyo, F. Cervantes-De La Torre and J. Gonzalez-Trejo, Math. Probl. Eng. 2014, vol. 2014, pp. 1-12.

    Article  Google Scholar 

  39. X. **, D. F. Chen, X. **e, J. L. Shen and M. J. Long, Steel Res. Int. 2013, vol. 84, pp. 31-39.

    Article  Google Scholar 

  40. H. Y. Hwang and G. A. Irons, Metall Mater Trans B 2012, vol. 43, pp. 302-315.

    Article  Google Scholar 

  41. X. H. Mao, J. S. Li and X. C. Lin, Adv Mater Res-Switz 2011, vol. 287-290, pp. 2735-2738.

    Article  Google Scholar 

  42. X. **, D. F. Chen, D. J. Zhang, X. **e and Y. Y. Bi, Ironmak Steelmak 2011, vol. 38, pp. 155-159.

    Article  Google Scholar 

  43. F. Sánchez, R. Miranda-Tello, C. Real-Ramírez, L. Hoyos, M. Ramírez, and J. González-Trejo: 2010 7th IEEE Electronics, Robotics and Automotive Mechanics Conference, CERMA 2010, Cuernavaca, 2010, pp. 355–59.

  44. B. Z. Shen, H. F. Shen and B. C. Liu, Ironmak Steelmak 2009, vol. 36, pp. 33-38.

    Article  Google Scholar 

  45. Y. Tsukaguchi, O. Nakamura, P. Jonsson, S. Yokoya, T. Tanaka and S. Hara, ISIJ Int 2007, vol. 47, pp. 1436-1443.

    Article  Google Scholar 

  46. R. Koitzsch, H. J. Odenthal and H. Pfeifer, Steel Res. Int. 2007, vol. 78, pp. 473-481.

    Article  Google Scholar 

  47. L. Hallgren, S. Takagi, R. Eriksson, S. Yokoya, and P. Jonsson: Sohn International Symposium Advanced Processing of Metals and Materials, 2006, vol. 2, pp. 471–84.

  48. S. Yokoya, S. Takagi, Y. Kudou, Y. Sasaki and M. Iguchi, Tetsu to Hagane 2004, vol. 90, pp. 317-21.

    Article  Google Scholar 

  49. B. K. Li and D. H. Li, Acta Metall Sin 2002, vol. 38, pp. 315-320.

    Google Scholar 

  50. I. Lemanowicz, R. Gorissen, H. J. Odenthal and H. Pfeifer, Stahl Eisen 2000, vol. 120, pp. 85-93.

    Google Scholar 

  51. D. Xu, W.K. Jones Jr., and J.W. Evans: Proceedings of the 1998 TMS Annual Meeting, Minerals, Metals & Materials Soc (TMS), Warrendale, PA, 1998, pp. 3–14.

  52. M. Burty, M. Larrecq, C. Pusse and Y. Zbaczyniak, Rev Metall-Paris 1996, vol. 93, pp. 1249-1255.

    Article  Google Scholar 

  53. D. E. Hershey, B. G. Thomas and F. M. Najjar, Int J Numer Meth Fl 1993, vol. 17, pp. 23-47.

    Article  Google Scholar 

  54. R.I.L. Guthrie: Engineering in Process Metallurgy, Oxford University Press, Oxford, 1992, pp. 510-520.

    Google Scholar 

  55. D. Gupta and A. K. Lahiri, Metall Mater Trans B 1994, vol. 25, pp. 227-233.

    Article  Google Scholar 

  56. D. Gupta and A. K. Lahiri, Metall Mater Trans B 1996, vol. 27, pp. 695-697.

    Article  Google Scholar 

  57. DynamicStudio User’s Guide. (Dantec Dynamics, Skovlunde, Denmark, 2013), pp. 17-25.

    Google Scholar 

  58. Fluent Inc: Fluent User’s Guide. Fluent Inc, Lebanon, 2007, p. 1864.

    Google Scholar 

  59. G.N. Abramovich: The theory of turbulent jets. 1st ed., MIT Press, Cambridge, 1963, p. 720.

    Google Scholar 

  60. Q. Yuan, B. G. Thomas and S. P. Vanka, Metall Mater Trans B 2004, vol. 35, pp. 685-702.

    Article  Google Scholar 

  61. L. F. Zhang, S. B. Yang, K. K. Cai, J. Y. Li, X. G. Wan and B. G. Thomas, Metall Mater Trans B 2007, vol. 38, pp. 63-83.

    Article  Google Scholar 

  62. K. C. Mills, P. Ramirez-Lopez, P. D. Lee, B. Santillana, B. G. Thomas and R. Morales, Ironmak Steelmak 2014, vol. 41, pp. 242-249.

    Article  Google Scholar 

Download references

Acknowledgments

C. A. Real-Ramirez, F. Sanchez-Silva, I. Carvajal-Mariscal, and J. Gonzalez-Trejo thank the SNI for the distinction granted and the stipend received. I. Carvajal-Mariscal thanks IPN and UAM for the sabbatical year. The physical experiments were developed in the Laboratorio de Ingeniería Térmica e Hidráulica Aplicada (LABINTHAP) SEPI-ESIME at the Instituto Politécnico Nacional. The numerical simulations were developed in the Laboratorio de Cómputo y Visualización Científica at Universidad Autónoma Metropolitana. The authors thank the anonymous reviewers who pointed out important aspects of this research.

Funding

This study was funded by the Instituto Politécnico Nacional, the Universidad Autónoma Metropolitana, and the Consejo Nacional de Ciencia y Tecnología.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cesar Augusto Real-Ramirez.

Additional information

Manuscript submitted July 20, 2017.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 13330 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Real-Ramirez, C.A., Carvajal-Mariscal, I., Sanchez-Silva, F. et al. Three-Dimensional Flow Behavior Inside the Submerged Entry Nozzle. Metall Mater Trans B 49, 1644–1657 (2018). https://doi.org/10.1007/s11663-018-1281-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1281-0

Keywords

Navigation