Log in

Transient Mold Fluid Flow with Well- and Mountain-Bottom Nozzles in Continuous Casting of Steel

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Nozzle shape plays a key role in determining the flow pattern in the mold of the continuous- casting process under both steady-state and transient conditions. This work applies computational models and experiments with a one-third scale water model to characterize flow in the nozzle and mold to evaluate well-bottom and mountain-bottom nozzle performance. Velocities predicted with the three-dimensional k-ε turbulence model agree with both particle- image velocimetry and impeller measurements in the water model. The steady-state jet velocity and angle leaving the ports is similar for the two nozzle-bottom designs. However, the results show that nozzles with a mountain-shaped bottom are more susceptible to problems from asymmetric flow, low-frequency surface-flow variations, and excessive surface velocities. The same benefits of the well-bottom nozzle are predicted for flow in the steel caster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. B.G. Thomas: in Making, Sha** and Treating of Steel, 11th ed., vol. 5, Casting volume, A. Cramb, ed., AISE Steel Foundation, Pittsburgh, PA, 2003, pp. 14.1–14.41

  2. J. Kubota, K. Okimoto, A. Shirayama, and H. Murakami: Steelmaking Conf. Proc., Iron and Steel Society, Warrendale, PA, 1991, vol. 74, pp. 233–41

  3. M.B. Assar, P.H. Dauby, G.D. Lawson: Steelmaking Conf. Proc., ISS, Warrendale, PA, 2000, pp. 397–411

    Google Scholar 

  4. D. Gupta, A.K. Lahiri: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 757–64

    Article  ADS  CAS  Google Scholar 

  5. D. Gupta, A.K. Lahiri: Steel Res., 1992, vol. 63 (5), pp. 201–04

    Google Scholar 

  6. B.G. Thomas, X. Huang, R.C. Sussman: Metall. Mater. Trans. B, 1994, vol. 25B, pp. 527–47

    Article  ADS  CAS  Google Scholar 

  7. B.G. Thomas, L. Zhang: ISIJ Int., 2001, vol. 41 (10), pp. 1181–93

    Article  CAS  Google Scholar 

  8. T. Honeyands, J. Herbertson: Steel Res., 1995, vol. 66 (7), pp. 287–93

    CAS  Google Scholar 

  9. N.J. Lawson, M.R. Davidson: J. Fluids Eng., 2002, vol. 124 (2), pp. 535–43

    Article  Google Scholar 

  10. D. Xu, W.K. Jones, J.W. Evans: in Processing of Metals and Advanced Materials: Modeling, Design and Properties, B.Q. Li, ed., TMS, Warrendale, PA, 1998, pp. 3–14

    Google Scholar 

  11. S. Sivaramakrishnan, B.G. Thomas, S.P. Vanka: in Materials Processing in the Computer Age, V. Voller, H. Henein, eds., TMS, Warrendale, PA, 2000, pp. 189–98

    Google Scholar 

  12. H. Bai, B.G. Thomas: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 253–67

    Article  ADS  CAS  Google Scholar 

  13. H. Bai, B.G. Thomas: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 269–84

    Article  ADS  CAS  Google Scholar 

  14. D.E. Hershey, B.G. Thomas, F.M. Najjar: Int. J. Numer. Methods Fluids, 1993, vol. 17 (1), pp. 23–47

    Article  ADS  CAS  Google Scholar 

  15. F.M. Najjar, B.G. Thomas, D.E. Hershey: Metall. Mater. Trans. B, 1995, vol. 26B, pp. 749–65

    Article  ADS  CAS  Google Scholar 

  16. B.G. Thomas, L.J. Mika, F.M. Najjar: Metall. Trans. B, 1990, vol. 21B, pp. 387–400

    Article  ADS  CAS  Google Scholar 

  17. X. Huang, B.G. Thomas: Can. Metall. Q., 1998, vol. 37 (3–4), pp. 197–212

    Article  CAS  Google Scholar 

  18. K. Takatani, Y. Tanizawa, H. Mizukami, and K. Nishimura: ISIJ Int.., 2001, vol. 41 (10), pp. 1252–61

    Article  CAS  Google Scholar 

  19. Q. Yuan, B.G. Thomas, S.P. Vanka: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 685–702

    Article  CAS  Google Scholar 

  20. Q. Yuan, S. Sivaramakrishnan, S.P. Vanka, and B.G. Thomas: Metall. Mater. Trans. B, 2004, vol. 35B (5), pp. 967–82

    Article  CAS  Google Scholar 

  21. B.G. Thomas, Q. Yuan, S. Sivaramakrishnan, T. Shi, S.P. Vanka, and M.B. Assar: ISIJ Int., 2001, vol. 41 (10), pp. 1262–71

    Article  CAS  Google Scholar 

  22. H. Versteeg, W. Malalasekra: An Introduction to Computational Fluid Dynamics: The Finite Volume Method Approach, Longman Scientific Technical, Essex, United Kingdom, 1995

    Google Scholar 

  23. B.E. Launder, D.B. Spalding: Mathematical Models of Turbulence, Academic Press, London, 1972

    MATH  Google Scholar 

  24. B.G. Thomas: in Making, Sha** and Treating of Steel, A.W. Cramb, ed., AISE Steel Foundation, Pittsburgh, PA, 2003

    Google Scholar 

  25. Y.A. Meng, B.G. Thomas: Metall. Trans. B, 2003, vol. 34B, pp. 685–705

    CAS  Google Scholar 

  26. B.T. Rietow: Master’s Thesis, University of Illinois at Urbana–Champaign, Urbana, IL, 2007

  27. D. Creech: Master’s Thesis, University of Illinois at Urbana–Champaign, Urbana, IL, 1999

  28. FLUENT6.3-Manual, ANSYS Inc., Lebanon, NH, 2007

  29. G.A. Panaras, A. Theodorakakos, G. Bergeles: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 1117–26

    Article  CAS  Google Scholar 

  30. B.E. Launder, D.B. Spalding: Comput. Meth. Appl. Mech. Eng., 1974, vol. 3 (2), pp. 269–89

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank Young-** Jeon and Professor Hyung-** Sung, Department of Mechanical Engineering, KAIST (South Korea), and Seong-Mook Cho, POSTECH (South Korea), for help with the PIV measurements. They also thank POSCO, Oh-Duck Kwon, Shin-Eon Kang, and POSCO Technical Research Laboratories for relevant data and providing the water model and ANSYS Inc. for supplying FLUENT. Support from the Continuous Casting Consortium, University of Illinois at Urbana–Champaign, POSCO, South Korea (Grant No. 4.0002397.01) and the National Science Foundation (Grant No. DMI 05-00453) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B.G. Thomas.

Additional information

Manuscript submitted July 17, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaudhary, R., Lee, GG., Thomas, B. et al. Transient Mold Fluid Flow with Well- and Mountain-Bottom Nozzles in Continuous Casting of Steel. Metall Mater Trans B 39, 870–884 (2008). https://doi.org/10.1007/s11663-008-9192-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-008-9192-0

Keywords

Navigation