Log in

An analytical model for optimal directional solidification using liquid metal cooling

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In what follows, a model is developed that describes the optimal processing parameters for directional solidification using liquid metal cooling (LMC). The model considers a sample with a flat geometry and, as a first approximation, can be used to treat the flat sections of a turbine blade. The model predicts (1) the optimal withdrawal rate of the casting from the hot zone, (2) the temperature gradient in the liquid at the solidification interface, and (3) the temperature profile along the length of the casting. The model is then used to perform a sensitivity analysis of the LMC process. Cooling bath temperature, baffle thickness, shell thickness, and shell thermal conductivity are shown to have a strong influence on system performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.J. Fitzgerald and R.F. Singer: Proc. 2nd Pacific Rim Int. Conf. on Modeling of Casting and Solidification Processes, E. Niyama and H. Kodama, eds., Hitachi Ltd., Hitachi, 1995, pp. 201–16.

    Google Scholar 

  2. A.F. Giamei and J.G. Tschinkel: Metall. Trans. A, 1976, vol. 7A, pp. 1427–34.

    CAS  Google Scholar 

  3. A.F. Giamei, E.H. Kraft, and F.D. Lemkey: New Trends in Materials Processing, ASM, Metals Park, OH, 1976, pp. 48–97.

    Google Scholar 

  4. J.S. Erickson, C.P. Sullivan, and F.L. Versnyder: in High Temperature Materials in Gas Turbines, P.R. Sahm and M.O. Speidel, eds., Elsevier Scientific Publishing Company, Amsterdam, 1974, pp. 315–43.

    Google Scholar 

  5. Robert F. Singer: in Materials for Advanced Power Engineering, Part II, D. Coutsouradis et al., eds., Kluwer Academic Publishers, Dortrecht, 1994, pp. 1707–1729.

    Google Scholar 

  6. P.J. Prescott, F.P. Incropera, and W.D. Bennon: Int. J. Heat Mass Transfer, 1994, vol. 34, pp. 2351–59.

    Google Scholar 

  7. D.G. Neilson and F.P. Incropera: Int. J. Heat Mass Transfer, 1991, vol. 34, pp. 1717–32.

    Article  CAS  Google Scholar 

  8. G.C. Bart, C.J. Hoogendoorn, and P.B. Schaareman: J. Solar Energy Eng., 1986, vol. 108, pp. 310–15.

    Article  CAS  Google Scholar 

  9. A.V. Kuznetsov and K. Vafai: Int. J. Heat Mass Transfer, 1995, vol. 38 (14), pp. 2557–67.

    Article  CAS  Google Scholar 

  10. M.C. Flemings: Solidification Processing, 1st ed., McGraw-Hill, New York, NY, 1974, pp. 146–54 and pp. 342–43.

    Google Scholar 

  11. S.S. Kutatelandze, S. Samson, and V.M. Borishanskii: Liquid Metal Heat Transfer Media, 1st ed., Chapman & Hall Ltd., London, 1959, pp. 82–86.

    Google Scholar 

  12. J.K. Tien and R.P. Gamble: Proc. 2nd Int. Conf. on the Strength of Metals and Alloys, ASM, Pacific Grove, CA, 1970, pp. 1037–41.

    Google Scholar 

  13. M. McLean: Directionally Solidified Materials for High Temperature Applications, 1st ed., The Metals Society, London, 1983, pp. 169–75.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fitzgerald, T.J., Singer, R.F. An analytical model for optimal directional solidification using liquid metal cooling. Metall Mater Trans A 28, 1377–1383 (1997). https://doi.org/10.1007/s11661-997-0274-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-997-0274-4

Keywords

Navigation