Log in

Microstructure and Deformation Behavior of Phase-Reversion-Induced Nanograined/Ultrafine-Grained Austenitic Stainless Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Materials with submicron to nanometer-sized grains by virtue of their high grain boundary area to grain size ratio provide valuable tools for studying deformation behavior in ultrafine-grained structures. In this regard, the well-known strain-induced martensite transformation and its reversal to the parent austenite phase were used to produce nanograins/ultrafine grains via controlled annealing of heavily cold-worked metastable austenite. The results of the electron microscopy study of phase-reversion-induced microstructure and deformation behavior of nanograined/ultrafine-grained (NG/UFG) austenitic stainless steel during tensile straining are described here. The phase-reversion-induced structure was observed to depend on the cold rolling reduction and temperature-time annealing cycle. The optimized structure consisted of nanocrystalline (d < 100 nm), ultrafine (d ≈ 100 to 500 nm), and submicron (d ≈ 500 to 1000 nm) grains and was characterized by a high yield strength (800 to 1000 MPa)–high ductility (30 to 40 pct) combination. Austenite nucleation during phase-reversion annealing occurred in the form of thin plates or as equiaxed grains along the martensite laths. Twinning and dislocation glide were identified as the primary deformation mechanisms, where twinning had a varied character. However, the high elongation seems to be associated with the gradual transformation of metastable austenite, with twinning having only a minor contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. E. Ma: Scripta Mater., 2003, vol. 49, pp. 663–68.

    Article  CAS  Google Scholar 

  2. C.C. Koch: Scripta Mater., 2003, vol. 49, pp. 657–62.

    Article  CAS  Google Scholar 

  3. R.D.K. Misra, S.W. Thompson, T.A. Hylton, and A.J. Boucek: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 745–60.

    ADS  CAS  Google Scholar 

  4. R.D.K. Misra, K.K. Tenneti, G.C. Weatherly, and G. Tither: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2341–51.

    Article  CAS  Google Scholar 

  5. R.D.K. Misra, H. Nathani, J.E. Hartmann, and F. Siciliano: Mater. Sci. Eng. A, 2005, vol. 394, pp. 339–52.

    Article  CAS  Google Scholar 

  6. S. Shanmugam, R.D.K. Misra, J.E. Hartmann, and S. Jansto: Mater. Sci. Eng. A, 2006, vol. 437, pp. 436–45.

    Article  CAS  Google Scholar 

  7. R. Song, D. Ponge, D. Raabe, and R. Kaspar: Acta Mater., 2005, vol. 53, pp. 845–58.

    Article  CAS  Google Scholar 

  8. F.J. Humphreys, P.B. Prangnell, J.R. Bowen, A. Gholina, and C. Harris: Philos. Trans. R. Soc. London A, 1999, vol. 357, pp. 1663–81.

    Article  ADS  CAS  Google Scholar 

  9. C. Pitan, T. Hashimoto, M. Kawazoe, J. Nagahora, and K. Higashi: Mater. Sci. Eng. A, 2000, vol. 280, pp. 62–68.

    Article  Google Scholar 

  10. N. Tsuji, Y. Saito, H. Utsunomiya, and S. Tanigawa: Scripta Mater., 1999, vol. 40, pp. 795–800.

    Article  CAS  Google Scholar 

  11. Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakaki: Acta Mater., 1999, vol. 47, pp. 579–83.

    Article  CAS  Google Scholar 

  12. A.L.M. Costa, A.C.C. Reis, L. Kestens, and M.S. Andrade: Mater. Sci. Eng. A, 2005, vol. 406, pp. 279–85.

    Article  CAS  Google Scholar 

  13. T.J. Webster, R.W. Seigel, and R. Bizios: Biomaterials, 1999, vol. 20, pp. 1221–27.

    Article  PubMed  CAS  Google Scholar 

  14. A. Thapa, T.J. Webster, and K.M. Haberstroh: J. Biomed. Mater. Res. A, 2003, vol. 67, pp. 1374–83.

    Article  PubMed  CAS  Google Scholar 

  15. A.P. Zhilyeav, G.V. Nurislamova, B.K. Kim, M.D. Baro, J.A. Szpunar, and T.G. Langdon: Acta Mater., 2003, vol. 51, pp. 753–65.

    Article  CAS  Google Scholar 

  16. Y. Ivanisenko, W. Lojkowski, R.Z. Valiev, and H.J. Fecht: Acta Mater., 2003, vol. 51, pp. 5555–70.

    Article  CAS  Google Scholar 

  17. A. Belyakov, T. Sakai, H. Miura, and R. Kaibyshev: Scripta Mater., 2000, vol. 42, pp. 319–25.

    Article  CAS  Google Scholar 

  18. H. Lianxi, L. Yu**, W. Erde, and Y. Yang: Mater. Sci. Eng. A, 2006, vol. 422, pp. 327–32.

    Article  CAS  Google Scholar 

  19. D. Jia, K.T. Ramesh, and E. Ma: Acta Mater., 2003, vol. 51, pp. 3495–3501.

    Article  CAS  Google Scholar 

  20. D. Jia, K.T. Ramesh, and E. Ma: Scripta Mater., 2000, vol. 42, pp. 73–78.

    CAS  Google Scholar 

  21. Q. Wei, L. Kecskes, T. Jiao, K.T. Hartwig, K.T. Ramesh, and E. Ma: Acta Mater., 2004, vol. 52, pp. 1859–69.

    Article  CAS  Google Scholar 

  22. Q. Wei, S. Cheng, K.T. Ramesh, and E. Ma: Mater. Sci. Eng. A, 2004, vol. 381, pp. 71–79.

    Article  CAS  Google Scholar 

  23. A. Vinogradov, S. Hashimoto, V. Patlan, and K. Kitagawa: Mater. Sci. Eng. A, 2001, vols. 319–321, pp. 862–66.

    Google Scholar 

  24. Y.M. Wang and E. Ma: Acta Mater., 2006, vol. 52, pp. 1699–1709.

    Article  CAS  Google Scholar 

  25. D.V. Kudashov, H. Baum, U. Martin, M. Heilmair, and H. Oettel: Mater. Sci. Eng. A, 2004, vols. 387–389, pp. 768–71.

    Google Scholar 

  26. R.D.K. Misra, B. Ravi Kumar, M. Somani, and P. Karjalainen: Scripta Mater., 2008, vol. 59, pp. 79–82.

    Article  CAS  Google Scholar 

  27. P. Juntunen, M. Somani, L.P. Karjalainen, R.D.K. Misra, and A. Kyrolainen: Proc. Int. Symp. on Advanced Stainless Steel (ISAS 2007), Chennai, Apr. 9–11, 2007.

  28. M.C. Somani, L.P. Karjalainen, R.D.K. Misra, P. Juntunen, and A. Kyröläinen: Proc. 6th Eur. Stainless Steel Conf. Science and Market, Helsinki, The Swedish Steel Producers’ Association, Stockholm, Sweden, June 10–13, 2008, pp. 519–24.

  29. M.C. Somani, P. Juntunen, L.P. Karjalainen, and R.D.K. Misra: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 729–44.

    Article  ADS  CAS  Google Scholar 

  30. K. Tomimura, S. Takaki, and Y. Tokunaga: ISIJ Int., 1991, vol. 31, pp. 1431–37.

    Article  CAS  Google Scholar 

  31. K. Tomimura, S. Takaki, S. Tanimoto, and Y. Tokunaga: ISIJ. Int., 1991, vol. 31, pp. 721–27.

    Article  CAS  Google Scholar 

  32. Y. Ma, J.-E. **, and Y.-K. Lee: Scripta Mater., 2005, vol. 52, pp. 1311–15.

    Article  CAS  Google Scholar 

  33. C. Herrera. R.L. Plaut, and A.F. Padilha: Mater. Sci. Forum, 2007, vol. 550, pp. 423–25.

    Article  CAS  Google Scholar 

  34. A. Lis, J. Lis, P. Wieczorek, and K. Kiera-Belec: Proc. 6th Eur. Stainless Steel Conf. Science and Market, Helsinki, The Swedish Steel Producers’ Association, Stockholm, Sweden, June 10–13, 2008, pp. 317–22.

  35. A. Knutsson, P. Hedström, and M. Odén: Steel Res. Int., 2008, vol. 79, pp. 433–39.

    CAS  Google Scholar 

  36. A. Poulon, S. Brochet, J.-B. Vogt, J.-C. Glez, and J.-D. Mithieux: ISIJ Int., 2009, vol. 49, pp. 293–301.

    Article  Google Scholar 

  37. J. Talonen and H. Hänninen: Acta Mater., 2007, vol. 55, pp. 6108–18.

    Article  CAS  Google Scholar 

  38. S. Takaki, K. Tomimura, and S. Ueda: ISIJ Int., 1994, vol. 34, pp. 522–27.

    Article  CAS  Google Scholar 

  39. M. Farooque, H. Ayub, A.U. Haq, and A.Q. Khan: J. Mater. Sci., 1998, vol. 33, pp. 2927–30.

    Article  CAS  Google Scholar 

  40. P. Hedstrom, U. Lienert, J. Almer, and M. Oden: Scripta Mater., 2007, vol. 56, pp. 213–16.

    Article  CAS  Google Scholar 

  41. Q. Xue, E.K. Cerrata, and G.T. Gray: Acta Mater., 2007, vol. 55, pp. 691–704.

    Article  CAS  Google Scholar 

  42. M.A. Mayers, D. Vohringer, and V.A. Lubarda: Acta Mater., 2001, vol. 19, pp. 4025–39.

    Article  Google Scholar 

  43. X.Z. Lia: Appl. Phys. Lett., 2004, vol. 84, pp. 3564–66.

    Article  ADS  CAS  Google Scholar 

  44. M. Chen, E. Ma, K.J. Hemker, H. Sheng, Y. Wang, and S. Cheng: Science, 2003, vol. 300, pp. 1275–77.

    Article  PubMed  ADS  CAS  Google Scholar 

  45. J. He and E.J. Lavernia: J. Mater. Res., 2001, vol. 16, pp. 2724–31.

    Article  ADS  CAS  Google Scholar 

  46. J. He, K.H. Chung, X. Liao, Y.T. Zhu, and E.J. Lavernia: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 707–12.

    Article  CAS  Google Scholar 

  47. X.Z. Liao, J.Y. Huang, Y.T. Zhu, F. Zhou, and E.J. Lavernia: Phil. Mag., 2003, vol. 83, pp. 3065–75.

    Article  ADS  CAS  Google Scholar 

  48. Z.W. Wang, Y.B. Wang, X.Z. Liao, Y.H. Zhao, E.J. Lavernia, Y.T. Zhu, Z. Horita, and T.G. Langdon: Scripta Mater., 2009, vol. 60, pp. 52–55.

    Article  CAS  Google Scholar 

  49. D. Barbier, N. Gey, S. Allain, and N. Bozzolo, and M. Hubert: Mater. Sci. Eng. A, 2009, vol. 500, pp. 196–206.

    Article  CAS  Google Scholar 

  50. J.G. Sevillano: Scripta Mater., 2009, vol. 60, pp. 336–39.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Three of the authors (RDKM, SAM, and JSS) acknowledge support from the Materials Processing Program, National Science Foundation, through Grant No. CMMI 0757799 (Dr. Joycelyn Harrison, program manager), and the Center for Structural and Functional Materials (CSFM), University of Louisiana at Lafayette. SN is grateful for the support from CSFM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R.D.K. Misra.

Additional information

Manuscript submitted February 10, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Misra, R., Nayak, S., Mali, S. et al. Microstructure and Deformation Behavior of Phase-Reversion-Induced Nanograined/Ultrafine-Grained Austenitic Stainless Steel. Metall Mater Trans A 40, 2498–2509 (2009). https://doi.org/10.1007/s11661-009-9920-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-9920-3

Keywords

Navigation