Log in

Enhanced Mechanical Properties through Reversion in Metastable Austenitic Stainless Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

A novel processing route of cold rolling and reversion annealing for enhanced mechanical properties has been investigated in metastable 17Cr-7Ni-type austenitic stainless steels, i.e., commercial grades AISI 301LN and AISI 301, and in some experimental heats. The investigation was essentially aimed at studying the possibility of processing nano/submicron-grained structure in these steels and to rationalize the possible effects of alloying elements on the reversion mechanisms. The steels were cold rolled to various reductions between 45 and 78 pct to induce the formation of martensite, and subsequently annealed between 600 °C to 1000 °C for short annealing times (mostly 1 to 100 seconds). Microstructure examinations of the reversion-annealed 301LN steel revealed that an ultrafine-grained austenitic structure was formed by the diffusional transformation mechanism within a short holding time above 700 °C, even after the lowest cold-rolling reduction. In contrast, in 301 steel and experimental heats, the shear type of transformation occurred at temperatures above 650 °C, but fine austenite grains were only formed by recrystallization at higher temperatures or longer holding times, e.g., at 900 °C/100 s. An attempt has been made to determine the reversion mechanisms in various steels by modifying the criteria governing the Gibbs free energy change during the martensite-austenite reversion in Cr-Ni alloys. The room temperature (RT)-tensile property evaluation showed that excellent combinations of yield or tensile strength and elongation are possible to achieve, depending mainly on annealing conditions both in the 301LN and 301 steels, but the experimental heats were too unstable for high ductility. Ultrafine grain size of austenite contributed to this in 301LN and shear-transformed high-dislocated austenite in 301. Upon reversion annealing, the reversion mechanism did not affect the texture. The texture of the reverted fine-grained austenite is very strong compared to the typical texture of commercially cold-rolled and annealed 301LN steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. Thermocalc is a trademark of Thermo-Calc Software, Stockholm, Sweden.

References

  1. P.-J. Cunat and T. Pauly: Proc. 4th Eur. Stainless Steel Science and Market Congr., Association Technique De La Siderburgie Francaise, Paris, 2002, pp. 10–18

  2. R. Andersson, E. Schedin, C. Magnusson, J. Ocklund, and A. Persson: Proc. 4th Eur. Stainless Steel Science and Market Congr., Association Technique De La Siderburgie Francaise, Paris, 2002, pp. 57–60

  3. T. Christiansen, M.A.J. Somers: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 675–82

    Article  CAS  Google Scholar 

  4. Design Manual for Structural Stainless Steel, 3rd ed., Euro Inox and The Steel Construction Institute, Luxembourg, 2006, p. 19

  5. A. Kyröläinen: Outokumpu Stainless Oy, Tornio, Finland, process data, 2005

  6. M. Buccioni, L. Alleva, and M. Barteri: Proc. 5th Eur. Stainless Steel Science and Market Congr., J.A. Odriozola and A. Paul, eds., Centro De Investigaciones Cientificas Isla De La Cartuja, Universidad de Sevilla, Seville, Spain, 2005, pp. 31–36

  7. Y. Ma, J.-E. **, Y.-K. Lee: Scripta Mater., 2005, vol. 52, pp. 1311–15

    Article  CAS  Google Scholar 

  8. K. Tomimura, S. Takaki, Y. Tokunaga: ISIJ Int., 1991, vol. 31 (12), pp. 1431–37

    Article  CAS  Google Scholar 

  9. K. Tomimura , S. Takaki , S. Tanimoto, Y. Tokunaga: ISIJ Int., 1991, vol. 31 (7), pp. 721–27

    Article  CAS  Google Scholar 

  10. Y. Yagodzinskyy, J. Romu, P. Nenonen, H. Hänninen: 7th Int. Conf. High Nitrogen Steels 2004, Ostend, Belgium, Steel Grips, GRIPS' Sparkling World of Steel, 2004, vol. 2, Suppl., pp. 103–12.

  11. S. Takaki and T. Suzaki: Proc. Stainless Steel ’9 Science and Market–3rd Eur. Congress, Associazione Italiana di Metallurgia, Chia Laguna Sardinia, Italy, 1999, vol. 2, pp. 49–54

  12. S. Takaki, K. Tomimura, S. Ueda: ISIJ Int., 1994, vol. 34 (6), pp. 522–27

    Article  CAS  Google Scholar 

  13. S. Takaki and Y. Tokunaga: Proc. 1st European Stainless Steel Conf., Florence, Italy, 1993, pp. 2.327–2.332

  14. X.H. Chen, J. Lu, L. Lu, K. Lu: Scripta Mater., 2005, vol. 52, pp. 1039–44

    Article  CAS  MathSciNet  Google Scholar 

  15. D.L. Johanssen, A. Kyröläinen, P.J. Ferreira: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 2325–38

    Article  Google Scholar 

  16. M.C. Somani, L.P. Karjalainen, M. Koljonen, P. Aspegren, T. Taulavuori, and A. Kyröläinen: Proc. 5th Eur. Stainless Steel Science and Market Congr., J.A. Odriozola and A. Paul, eds., Centro De Investigaciones Cientificas Isla De La Cartuja, Universidad de Sevilla, Seville, Spain, 2005, pp. 37–42

  17. M. Somani, P. Karjalainen, P. Juntunen, S. Rajasekhara, P. Ferreira, A. Kyröläinen, T. Taulavuori, and P. Aspegren: Iron and Steel, vol. 40, pp. 283–89; Int. Conf. HSLA Steels 2005 and ISUGS 2005, Sanya, China, 2005

  18. S. Rajasekhara, M.C. Somani, L.P. Karjalainen, A. Kyröläinen, and P.J. Ferreira: Iron and Steel, vol. 40, pp. 232–37; Int. Conf. of HSLA Steels 2005 and ISUGS 2005, Sanya, China, 2005

  19. S. Rajasekhara, M.C. Somani, M. Koljonen, L.P. Karjalainen, A. Kyröläinen, and P.J. Ferreira: MRS 2005 Fall Meeting, Materials Research Society, Boston, MA, 2006, vol. 903E, pp. 40.1–40.6

  20. M.C. Somani, L.P. Karjalainen, A. Kyröläinen, T. Taulavuori: Mater. Sci. Forum, 2007, vols. 539–543, pp. 4875–80

    Article  Google Scholar 

  21. J. Talonen, P. Nenonen, G. Pape, H. Hänninen: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 421–32

    Article  CAS  Google Scholar 

  22. K. Nohara, Y. Ono, N. Ohashi: J. Iron Steel Inst. Jpn., 1977, vol. 63, pp. 212–22

    Google Scholar 

  23. R.L. Miller: Trans. ASM, 1968, vol. 61, pp. 592–97

    Google Scholar 

  24. G.B. Olson, M. Cohen: Metall. Trans. A, 1975, vol. 6A, pp. 791–95

    CAS  Google Scholar 

  25. S. Rajasekhara, P.J. Ferreira, L.P. Karjalainen, and A. Kyröläinen: Proc. 6th Eur. Stainless Steel Conf. Science and Market, P. Karjalainen and S. Hertzman, eds., Jernkontoret, Helsinki, Finland, 2008, pp. 505–10

  26. L. Kaufman, E.V. Clougherty, R.J. Weiss: Acta Metall., 1963, vol. 11, pp. 323–35

    Article  CAS  Google Scholar 

  27. T. Takemoto, Y. Murata, T. Tanaka: ISIJ Int., 1990, vol. 30 (8), pp. 608–14

    Article  CAS  Google Scholar 

  28. K. Tomimura, S. Takaki, Y. Tokunaga: J. Iron Steel Inst. Jpn., 1990, vol. 76 (10), pp. 1728–35

    CAS  Google Scholar 

  29. K.-E. Thelning: Steel and Its Heat Treatment, Bofors Handbook, Butterworth and Co., London, 1975, pp. 82–126

    Google Scholar 

  30. M.C. Somani, L.P. Karjalainen, R.D.K. Misra, P. Juntunen, and A. Kyröläinen: Proc. 6th Eur. Stainless Steel Conf. Science and Market, P. Karjalainen and S. Hertzman, eds., Jernkontoret, Helsinki, Finland, 2008, pp. 519–24

  31. S. Rajasekhara, P.J. Ferreira, L.P. Karjalainen, and A. Kyröläinen: Proc. 6th Eur. Stainless Steel Conf. Science and Market, P. Karjalainen and S. Hertzman, eds., Jernkontoret, Helsinki, Finland, 2008, pp. 511–17

  32. S.K. Varma, J. Kalyanam, L.E. Murr, V. Srinivas: J. Mater. Sci. Lett., 1994, vol. 13, pp. 107–11

    Article  CAS  Google Scholar 

  33. M.A. Meyers, O. Vöhringer, V.A. Lubarda: Acta Mater., 2001, vol. 49, pp. 4025–39

    Article  CAS  Google Scholar 

  34. C.W. Sinclair, H. Proudhon, J.-D. Mithieux: Mater. Sci. Forum, 2007, vols. 539–543, pp. 4714–19

    Article  Google Scholar 

  35. S. Rajasekhara, P.J. Ferreira, L.P. Karjalainen, A. Kyröläinen: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1202–10

    Article  ADS  CAS  Google Scholar 

  36. G.V. Kurdjumov, G. Sachs: Z. Phys., 1930, vol. 64, pp. 325–43

    Article  Google Scholar 

  37. M. Hölscher, D. Raabe, K. Lücke: Steel Res., 1991, vol. 62, pp. 567–75

    Google Scholar 

  38. B. Ravi Kumar, A.K. Singh, B. Mahato, P.K. De, N.R. Bandyopadhyay, D.K. Bhattacharya: Mater. Sci. Eng. A, 2006, vol. 429, pp. 205–11

    Article  Google Scholar 

Download references

Acknowledgments

The financial support from the Finnish Funding Agency for Technology and Innovation (Tekes), Outokumpu Oyj, LaserPlus Oy, and Sanmina-SCI Enclosure Systems Oy in the Tekes-project Nr: 40266/04-Dnr: 2044/31/03 is acknowledged with gratitude.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R.D.K. Misra.

Additional information

Manuscript submitted April 24, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Somani, M., Juntunen, P., Karjalainen, L. et al. Enhanced Mechanical Properties through Reversion in Metastable Austenitic Stainless Steels. Metall Mater Trans A 40, 729–744 (2009). https://doi.org/10.1007/s11661-008-9723-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-008-9723-y

Keywords

Navigation