Log in

Non-coaxial behavior modeling of sands subjected to principal stress rotation

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

This paper attempts to clarify the necessary elements for describing the non-coaxial behavior of sand in the plasticity framework based on the critical-state soil mechanics. Such sand response to two representative loading types, the monotonic loading with fixed principal stress direction and rotation of principal stress direction, is the main focus. The present constitutive model can be regarded as an extension of the existing platform model for sand considering the inherent anisotropy. A novel non-coaxial flow direction involved in the plastic flow rule is the crucial feature, which is defined as the part of stress increment perpendicular to a reference direction related to the current stress direction through the Gram–Schmidt orthogonalization process. Such incorporation of the effects of the stress increment on the plastic deformation makes the model capture the non-coaxiality for the monotonic loading with fixed principal stress direction. In order to describe the plastic response induced by the pure rotation of principal stress direction, a set of map** rules included in the bounding surface plasticity are formulated to develop plastic flow mechanism in the general multi-axial stress space. Besides, the effects of fabric anisotropy on simulating the non-coaxial plastic behavior are discussed. The results show that the above-mentioned modifications on these model ingredients make the theoretical simulation fit well with test data for Toyoura sand under the foregoing two loading conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

A :

Anisotropic variable

b :

Intermediate principal stress ratio

e, ec :

Void ratio and critical-state void ratio

f, F :

Yield surface and bounding surface

G :

Elastic shear modulus

g(θ):

Interpolation function for the failure stress ratio

K :

Elastic bulk modulus

HL, HU :

Loading plastic modulus and unloading plastic modulus

M :

Internal state variable related to stress history

Mc, Me :

Critical-state stress ratio in triaxial compression and triaxial extension

Md, Mp :

Phase transformation stress ratio and peak stress ratio

n ij :

Loading direction defined in the yield surface

\(\bar{n}_{ij}\) :

Loading direction defined in the bounding surface

\(n_{ij}^{g}\) :

Integrated plastic flow direction

\(n_{ij}^{gc}\), \(n_{ij}^{gn}\) :

Coaxial part and non-coaxial part of the integrated plastic flow direction

\(n_{p}^{g}\), \(n_{q}^{g}\), \(n_{\theta }^{g}\) :

Three components related to the first derivatives of p, q and θ in \(n_{ij}^{gc}\)

\(n_{ij}^{{{\text{d}}\sigma }}\) :

Normalized unit tensor of stress increment tensor

\(n_{ij}^{\text{non}}\) :

Non-coaxial flow direction

\(\hat{R}\) :

Stress ratio related to a modified stress

R1, R2 :

Similarity ratio related to radial map** and stress rate direction map**

p, \(\bar{p}\) :

Mean pressure related to current stress and image stress

q, \(\bar{q}\) :

Equivalent stress related to current stress and image stress

s ij :

Deviatoric stress tensor and image deviatoric stress tensor

dsij :

Deviatoric part of stress increment \({\text{d}}\sigma_{ij}\)

\({\text{d}}s_{ij}^{\text{non}}\) :

Component of dsij along the direction orthogonal to sij

\(s_{ij}^{p}\) :

Principal stress tensor of sij

\(S_{ij}^{p}\) :

Combined stress tensor related to \(s_{ij}^{p}\)

\(\hat{T}_{ij}\) :

Modified stress tensor

\(\alpha\) :

Angle of the major principal stress in relation to orientation of deposition

\(\beta\) :

Angle of the major principal plastic strain increment to the vertical axis

\(\delta_{ij}\) :

Kronecker delta

\(\Delta\) :

Vector magnitude characterizing the fabric anisotropy

\(\varepsilon_{ij}\), \(\varepsilon_{ij}^{e}\), \(\varepsilon_{ij}^{p}\) :

Strain tensor, elastic strain tensor and plastic strain tensor

\(\varepsilon_{ij}^{pc}\), \(\varepsilon_{ij}^{pn}\) :

Coaxial plastic strain tensor and non-coaxial plastic strain tensor

\(\varepsilon_{z}\), \(\varepsilon_{r}\), \(\varepsilon_{\vartheta }\), \(\varepsilon_{z\vartheta }\) :

Axial, radial, circumferential and torsional strains

\(\theta\), \(\bar{\theta }\), \(\hat{\theta }\) :

Lode angle related to current stress, image stress and modified stress

\(\sigma_{ij}\), \(\bar{\sigma }_{ij}\) :

Current stress tensor, image stress tensor

\(\bar{\sigma }_{ij}^{1}\), \(\bar{\sigma }_{ij}^{2}\) :

Radial map** and stress rate direction map**

\(\sigma_{1}\), \(\sigma_{2}\), \(\sigma_{3}\) :

Major, intermediate and minor principal stresses

\(\sigma_{z}\), \(\sigma_{r}\), \(\sigma_{\vartheta }\), \(\tau_{z\vartheta }\) :

Axial, radial, circumferential and torsional stresses

\(\psi\) :

State parameter

\(\omega_{ij}\) :

Projection center related to radial map**

\(\sigma_{ij} = \left[ {\sigma_{11} \sigma_{33} \sigma_{13} } \right]\left( {i,j = 1,2} \right)\) :

Map** from tensor to vector in stress space (\(\sigma_{11}\), \(\sigma_{33}\), \(\sigma_{13}\))

\(t_{ij}^{\text{non}} \left( {i,j = 1,2} \right)\) :

Direction of current stress in stress space (\(\sigma_{11}\), \(\sigma_{33}\), \(\sigma_{13}\))

\(m_{ij} \left( {{\text{i}},{\text{j}} = 1,2} \right)\) :

Direction orthogonal to current stress in stress space (\(\sigma_{11}\), \(\sigma_{33}\), \(\sigma_{13}\))

\(m_{ij}^{\text{non}} \left( {i,j = 1,2} \right)\) :

Non-coaxial flow related to \(m_{ij}\)

References

  1. Arthur JRF, Chua KS, Dunstan T (1977) Induced anisotropy in a sand. Geotechnique 27(1):13–30

    Google Scholar 

  2. Bee K, Jefferies MG (1985) A state parameter for sand. Geotechnique 35(2):99–112

    Google Scholar 

  3. Cai Y, Yu HS, Wanatowski D, Li X (2012) Noncoaxial behavior of sand under various stress paths. J Geotech Geoenviron Eng 139(8):1381–1395

    Google Scholar 

  4. Dafalias YF, Popov EP (1977) Cyclic loading for materials with a vanishing elastic region. Nucl Eng Des 41(2):293–302

    Google Scholar 

  5. Josselin De, de Jong G (1971) The double sliding, free rotating model for granular assemblies. Geotechnique 21(2):155–163

    Google Scholar 

  6. Drucker DC, Prager W (1952) Soil mechanics and plastic analysis or limit design. Q Appl Math 10(2):157–165

    MathSciNet  MATH  Google Scholar 

  7. Fukushima S, Tatsuoka F (1984) Strength and deformation characteristics of saturated sand at extremely low pressures. Soils Found 24(4):30–48

    Google Scholar 

  8. Gutierrez M, Ishihara K, Towhata I (1991) Flow theory for sand during rotation of principal stress direction. Soils Found 31(4):121–132

    Google Scholar 

  9. Hashiguchi K (1989) Subloading surface model in unconventional plasticity. Int J Solids Struct 25(8):917–945

    MATH  Google Scholar 

  10. Hashiguchi K, Tsutsumi S (2001) Elastoplastic constitutive equation with tangential stress rate effect. Int J Plast 17(1):117–145

    MATH  Google Scholar 

  11. Hight DW, Gens A, Symes MJ (1983) The development of a new hollow cylinder apparatus for investigating the effects of principal stress rotation in soils. Geotechnique 33(4):355–383

    Google Scholar 

  12. Huang M, Lu X, Qian J (2010) Non-coaxial elasto-plasticity model and bifurcation prediction of shear banding in sands. Int J Numer Anal Meth Geomech 34(9):906–919

    MATH  Google Scholar 

  13. Huang MS, Chen ZQ, Lu XL (2018) Bifurcation prediction of shear banding in sand with a non-coaxial critical state model considering inherent anisotropy. Soils Found 58(3):641–653

    Google Scholar 

  14. Ishihara K, Towhata I (1983) Sand response to cyclic rotation of principal stress directions as induced by wave loads. Soils Found 23(4):11–26

    Google Scholar 

  15. Ishihara K (1993) Liquefaction and flow failure during earthquakes. Géotechnique 43(3):351–415

    MathSciNet  Google Scholar 

  16. Lam WK, Tatsuoka F (1988) Effects of initial anisotropic fabric and σ2 on strength and deformation characteristics of sand. Soils Found 28(1):89–106

    Google Scholar 

  17. Lashkari A, Latifi M (2008) A non-coaxial constitutive model for sand deformation under rotation of principal stress axes. Int J Numer Anal Methods Geomech 32(9):1051–1086

    MATH  Google Scholar 

  18. Li XS, Dafalias YF (2000) Dilatancy for cohesionless soils. Geotechnique 50(4):449–460

    Google Scholar 

  19. Li XS, Dafalias YF (2002) Constitutive modeling of inherently anisotropic sand behavior. J Geotech Geoenviron Eng 128(10):868–880

    Google Scholar 

  20. Li XS, Dafalias YF (2004) A constitutive framework for anisotropic sand including non-proportional loading. Geotechnique 54(1):41–55

    Google Scholar 

  21. Lu XL, Huang MS (2015) Static liquefaction of sands under isotropically and Ko-consolidated undrained triaxial conditions. J Geotech Geoenviron Eng 141(1):04014087

    Google Scholar 

  22. Lu XL, Huang MS, Qian JG (2011) The onset of strain localization in cross-anisotropic soils under true triaxial condition. Soils Found 51(4):693–700

    Google Scholar 

  23. Miura K, Miura S, Toki S (1986) Deformation behavior of anisotropic dense sand under principal stress axes rotation. Soils Found 26(1):36–52

    Google Scholar 

  24. Nicot F, Darve F (2007) Basic features of plastic strains: from micro-mechanics to incrementally nonlinear models. Int J Plast 23:1555–1588

    MATH  Google Scholar 

  25. Oda M, Koishikawa I, Higuchi T (1978) Experimental study of anisotropic shear strength of sand by plane strain test. Soils Found 18(1):25–38

    Google Scholar 

  26. Pastor M, Zienkiewicz OC, Chan AHC (1990) Generalized plasticity and the modelling of soil behaviour. Int J Numer Anal Methods Geomech 14(3):151–190

    MATH  Google Scholar 

  27. Papamichos E, Vardoulakis I (1995) Shear band formation in sand according to non-coaxial plasticity model. Geotechnique 45(4):649–661

    Google Scholar 

  28. Papadimitriou AG, Bouckovalas GD (2002) Plasticity model for sand under small and large cyclic strains: a multiaxial formulation. Soil Dyn Earthq Eng 22(3):191–204

    Google Scholar 

  29. Pradel D, Ishihara K, Gutierrez M (1990) Yielding and flow of sand under principal stress axes rotation. Soils Found 30(1):87–99

    Google Scholar 

  30. Qian JG, Yang J, Huang MS (2008) Three-dimensional noncoaxial plasticity modeling of shear band formation in geomaterials. J Eng Mech 134(4):322–329

    Google Scholar 

  31. Richart FE Jr, Hall JR, Woods RD (1970) Vibration of soils and foundations. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  32. Roscoe KH, Bassett RH, Cole ER (1967) Principal axes observed during simple shear of a sand. In: Proceedings of the geotechnical conference, vol 1, pp 231–237. Oslo

  33. Roscoe KH (1970) The influence of strains in soil mechanics. Geotechnique 20(2):129–170

    Google Scholar 

  34. Rudnick JW, Rice JR (1975) Conditions for the localization of deformation in pressure-sensitive dilatant materials. J Mech Phys Solids 23(6):371–394

    Google Scholar 

  35. Spencer AJM (1964) A theory of the kinematics of ideal soils under plane strain conditions. J Mech Phys Solids 12(5):337–351

    MathSciNet  MATH  Google Scholar 

  36. Tatsuoka F, Sakamoto M, Kawamura T, Fukushima S (1986) Strength and deformation characteristics of sand in plane strain compression at extremely low pressures. Soils Found 26(1):65–84

    Google Scholar 

  37. Tian Y, Yao YP (2017) Modelling the non-coaxiality of soils from the view of cross-anisotropy. Comput Geotech 86:219–229

    Google Scholar 

  38. Trefethen LN, Bau D III (1997) Numerical linear algebra. Society for industrial and Applied Mathematics, Philadelphia

    MATH  Google Scholar 

  39. Tsutsumi S, Hashiguchi K (2005) General non-proportional loading behavior of soils. Int J Plast 21(10):1941–1969

    MATH  Google Scholar 

  40. Wang ZL, Dafalias YF, Shen CK (1990) Bounding surface hypoplasticity model for sand. J Eng Mech 116(5):983–1001

    Google Scholar 

  41. Yu HS, Yuan X (2006) On a class of non-coaxial plasticity models for granular soils. Proc R Soc Lond A Math Phys Eng Sci 462(2067):725–748

    MATH  Google Scholar 

  42. Yang ZX, Li XS, Yang J (2008) Quantifying and modelling fabric anisotropy of granular soils. Géotechnique 58(4):237–248

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51738010) and the National Key R&D Program of China (Grant No. 2016YFC0800200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maosong Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Due to \({\text{d}}s_{ij} /s_{ij} = {\text{const}}\), substituting \({\text{d}}s_{ij} = {\text{const}} \cdot s_{ij}\) into Eq. (5) yields

$${\text{d}}s_{ij}^{\text{non}} = {\text{const}} \cdot s_{ij} - {\text{const}} \cdot \frac{{s_{kl} s_{kl} }}{{s_{mn} s_{mn} }}s_{ij} - {\text{const}} \cdot \frac{{s_{kl} S_{kl} }}{{S_{mn} S_{mn} }}S_{ij} = - {\text{const}} \cdot \frac{{s_{kl} S_{kl} }}{{S_{mn} S_{mn} }}S_{ij}$$
(43)

Due to \(S_{ij} = s_{ik} s_{kj} - \frac{2}{3}J_{2} \delta_{ij} - \frac{{3J_{3} }}{{2J_{2} }}s_{ij}\),

$$s_{ij} S_{ij} = s_{ik} s_{kj} s_{ji} - \frac{2}{3}J_{2} \delta_{ij} s_{ij} - \frac{{3J_{3} }}{{2J_{2} }}s_{ij} s_{ij}$$
(44)

Considering that \(\delta_{ij} s_{ij} = 0\), \(J_{2} = \frac{1}{2}s_{ij} s_{ij}\) and \(J_{3} = \frac{1}{3}s_{ij} s_{jk} s_{ki}\), Eq. (44) can be reduced to

$$s_{ij} S_{ij} = 3J_{3} - 0 - \frac{{3J_{3} }}{{2J_{2} }}2J_{2} = 0$$
(45)

As a result, Eq. (7) is proved due to \(s_{ij} S_{ij} = s_{kl} S_{kl} = 0\).

Appendix 2

The corresponding partial derivatives are given as follows

$$\frac{\partial p}{{\partial \sigma_{ij} }} = \frac{1}{3}\delta_{ij} ,\quad \frac{\partial q}{{\partial \sigma_{ij} }} = \frac{{3s_{ij} }}{2q}\quad \frac{\partial \theta }{{\partial \sigma_{ij} }} = - \frac{\sqrt 3 }{2\cos 3\theta }\left( {J_{2}^{{{{ - 3} \mathord{\left/ {\vphantom {{ - 3} 2}} \right. \kern-0pt} 2}}} \frac{{\partial J_{3} }}{{\partial \sigma_{ij} }} - \frac{3}{2}J_{3} J_{2}^{{{{ - 5} \mathord{\left/ {\vphantom {{ - 5} 2}} \right. \kern-0pt} 2}}} \frac{{\partial J_{2} }}{{\partial \sigma_{ij} }}} \right)$$
(46)
$$\frac{{\partial J_{2} }}{{\partial \sigma_{ij} }} = s_{ij} ,\quad \frac{{\partial J_{3} }}{{\partial \sigma_{ij} }} = s_{ik} s_{kj} - \frac{1}{3}\delta_{ij} s_{kl} s_{kl}$$
(47)
$$\frac{\partial g(\theta )}{\partial \theta } = \frac{12c\cos (3\theta )(c - 1)}{{[c - \sin (3\theta )(c - 1) + 1]^{2} }} - \frac{3\cos (3\theta )(c - 1)}{2}$$
(48)

Appendix 3

Given that the integrated plastic flow rule is written as

$${\text{d}}\varepsilon_{ij}^{p} = {\text{d}}\lambda n_{ij}^{g} = {\text{d}}\lambda \left( {n_{ij}^{gc} + n_{ij}^{gn} } \right)$$
(49)

For the stress-controlled loading condition that \({\text{d}}\sigma_{ij}\) is known, Eq. (25) can be used directly to calculate the plastic loading index. For the strain-controlled loading condition that \({\text{d}}\varepsilon_{ij}\) is given, substituting Eq. (2) and Eq. (49) into Eq. (25) gives

$${\text{d}}\lambda = \left\{ {\begin{array}{*{20}c} {\frac{{n_{ij} D_{ijkl}^{e} {\text{d}}\varepsilon_{kl} }}{{H_{\text{L}} + n_{ij} D_{ijkl}^{e} n_{kl}^{g} }}} & {n_{ij} D_{ijkl}^{e} {\text{d}}\varepsilon_{kl} > 0} \\ {\frac{{\bar{n}_{ij} D_{ijkl}^{e} {\text{d}}\varepsilon_{kl} }}{{H_{\text{U}} + \bar{n}_{ij} D_{ijkl}^{e} n_{kl}^{g} }}} & {n_{ij} D_{ijkl}^{e} {\text{d}}\varepsilon_{kl} \le 0} \\ \end{array} } \right.$$
(50)

where \(D_{ijkl}^{e}\) is the elastic stiffness tensor, expressed as

$$D_{ijkl}^{e} = (K - 2G/3)\delta_{ij} \delta_{kl} + G(\delta_{ki} \delta_{lj} + \delta_{li} \delta_{kj} )$$
(51)

Combination of Eqs. (50) and (2) yields

$${\text{d}}\sigma_{ij} = D_{ijkl}^{ep} {\text{d}}\varepsilon_{kl}$$
(52)

where

$$D_{ijkl}^{ep} = \left\{ {\begin{array}{*{20}c} {D_{ijkl}^{e} - \frac{{D_{ijpq}^{e} n_{pq} n_{mn}^{g} D_{mnkl}^{e} }}{{H_{\text{L}} + n_{ij} D_{ijkl}^{e} n_{kl}^{g} }}} & {n_{ij} D_{ijkl}^{e} {\text{d}}\varepsilon_{kl} > 0} \\ {D_{ijkl}^{e} - \frac{{D_{ijpq}^{e} \bar{n}_{pq} n_{mn}^{g} D_{mnkl}^{e} }}{{H_{\text{U}} + \bar{n}_{ij} D_{ijkl}^{e} n_{kl}^{g} }}} & {n_{ij} D_{ijkl}^{e} {\text{d}}\varepsilon_{kl} \le 0} \\ \end{array} } \right..$$
(53)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Huang, M. Non-coaxial behavior modeling of sands subjected to principal stress rotation. Acta Geotech. 15, 655–669 (2020). https://doi.org/10.1007/s11440-018-0760-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-018-0760-4

Keywords

Navigation