Log in

Development of a 50-year daily surface solar radiation dataset over China

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Although solar radiation is a crucial parameter in designing solar power devices and studying land surface processes, long-term and densely distributed observations of surface solar radiation are usually not available. This paper describes the development of a 50-year dataset of daily surface solar radiation at 716 China Meteorological Administration (CMA) stations. First, a physical model, without any local calibration, is applied to estimate the daily radiation at all 716 CMA routine stations. Then, an ANN-based (Artificial Neural Network) model is applied to extend radiation estimates to earlier periods at each of all 96 CMA radiation stations. The ANN-based model is trained with recent reliable radiation data and thus its estimate is more reliable than the physical model. Therefore, the ANN-based model is used to correct the physical model dynamically at a monthly scale. The correction generally improves the accuracy of the radiation dataset estimated by the physical model: the mean bias error (MBE) averaged over all the 96 radiation stations during 1994–2002 is reduced from 0.68 to −0.11 MJ m−2 and the root mean square error (RMSE) from 2.01 to 1.80 MJ m−2. The new radiation dataset shows superior performance over previous estimates by locally calibrated Ångström-Prescott models. Based on the new radiation dataset, the annual mean daily solar radiation over China is 14.3 MJ m−2. The maximal seasonal mean daily solar radiation occurs in the Tibetan Plateau during summer with a value of 27.1 MJ m−2, whereas the minimal seasonal mean daily solar radiation occurs in the Sichuan Basin during winter with a value of 4.7 MJ m−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thornton P E, Running S W. An improved algorithm for estimating incident daily solar radiation from measurements of temperature, humidity, and precipitation. Agric For Meteorol, 1999, 93: 211–228

    Article  Google Scholar 

  2. Liu X Y, Mei X R, Li Y Z, et al. Calibration of the Angström-Prescott coefficients (a, b) under different time scales and their impacts in estimating global solar radiation in the Yellow River basin. Agric For Meteorol, 2009, 149: 697–710

    Article  Google Scholar 

  3. Moradi I. Quality control of global solar radiation using sunshine duration hours. Energy, 2009, 34: 1–6

    Article  Google Scholar 

  4. Iziomon M G, Mayer H. Assessment of some global solar radiation parameterizations. J Atmos Solar-Terr Phys, 2002, 64: 1631–1643

    Article  Google Scholar 

  5. Abraha M G, Savage M J. Comparison of estimates of daily solar radiation from air temperature range for application in crop simulations. Agric For Meteorol, 2008, 148: 401–416

    Article  Google Scholar 

  6. Ångström A. Solar and terrestrial radiation. Q J R Meteorol Soc, 1924, 50: 121–125

    Article  Google Scholar 

  7. Prescott J A. Evaporation from a water surface in relation to solar radiation. Trans Roy Soc Austr, 1940, 641: 114–125

    Google Scholar 

  8. Xu J Q, Masuda K, Ishigooka Y, et al. Estimation and verification of daily surface shortwave flux over China. J Meteorol Soc Jpn, 2011, 89A: 225–238

    Article  Google Scholar 

  9. Bristow K L, Campbell G S. On the relationship between incoming solar radiation and daily maximum and minimum temperature. Agric For Meteorol, 1984, 31: 159–166

    Article  Google Scholar 

  10. Meza F, Varas E. Estimation of mean monthly solar global radiation as a function of temperature. Agric For Meteorol, 2000, 100: 231–41

    Article  Google Scholar 

  11. Liu D L, Scott B J. Estimation of solar radiation in Australia from rainfall and temperature observations. Agric For Meteorol, 2001, 106: 41–59

    Article  Google Scholar 

  12. Liu X Y, Mei X R, Li Y Z, et al. Evaluation of temperature-based global solar radiation models in China. Agric For Meteorol, 2009, 149: 1433–1446

    Article  Google Scholar 

  13. Reddy S J. An empirical method for estimating sunshine from total cloud amount. Sol Energy, 1974, 15: 281–285

    Article  Google Scholar 

  14. Supit I, Kappel R R. A simple method to estimate global radiation. Sol Energy, 1998, 63: 147–160

    Article  Google Scholar 

  15. Ehnberg J S G, Bollen M H J. Simulation of global solar radiation based on cloud observations. Sol Energy, 2005, 78: 157–62

    Article  Google Scholar 

  16. Pohlert T. Use of empirical global radiation models for maize growth simulation. Agric For Meteorol, 2004, 126: 47–58

    Article  Google Scholar 

  17. Almorox J, Hontoria C. Global solar radiation estimation using sunshine duration in Spain. Energy Conv Manag, 2004, 45: 1529–1535

    Article  Google Scholar 

  18. Lam J C, Wan K K W, Lau C C S, et al. Climatic influences on solar modelling in China. Renew Energy, 2008, 33: 1591–1604

    Article  Google Scholar 

  19. Li H S, Ma W B, Lian Y W, et al. Global solar radiation estimation with sunshine duration in Tibet, China. Renew Energy, 2011, 36: 3141–3145

    Article  Google Scholar 

  20. Liu J D, Liu J M, Linderholm H W, et al. Observation and calculation of the solar radiation on the Tibetan Plateau. Energy Conv Manag, 2012, 57: 23–32

    Article  Google Scholar 

  21. Li H S, Ma W B, Lian Y W, et al. Estimating daily global solar radiation by day of year in China. Appl Energy, 2010, 87: 3011–3017

    Article  Google Scholar 

  22. Tymvios F S, Jacovides C P, Michaelides S C, et al. Comparative study of Angström’s and artificial neural networks’ methodologies in estimating global solar radiation. Sol Energy, 2006, 78: 752–762

    Article  Google Scholar 

  23. Mubiru J, Banda E J K B. Estimation of monthly average daily global solar irradiation using artificial neural networks. Sol Energy, 2008, 82: 181–187

    Article  Google Scholar 

  24. Lam J C, Wan K K W, Yang L. Solar radiation modelling using ANNs for different climates in China. Energy Conv Manag, 2008, 49: 1080–1090

    Article  Google Scholar 

  25. Jiang Y N. Computation of monthly mean daily global solar radiation in China using artificial neural networks and comparison with other empirical models. Energy, 2009, 34: 1276–1283

    Article  Google Scholar 

  26. Yang K, Koike T, Ye B. Improving estimation of hourly, daily, and monthly downward shortwave radiation by importing global data sets. Agric For Meteorol, 2006, 137: 43–55

    Article  Google Scholar 

  27. Yang K, He J, Tang W J, et al. On downward shortwave and longwave radiations over high altitude regions: Observation and modeling in the Tibetan Plateau. Agric For Meteorol, 2010, 150: 38–46

    Article  Google Scholar 

  28. Pinker R T, Laszlo I. Modeling surface solar irradiance for satellite applications on a global scale. J Appl Meteorol, 1992, 31: 194–211

    Article  Google Scholar 

  29. Zhang Y C, Rossow W B, Lacis A A. Calculation of surface and top of atmosphere radiative fluxes from physical quantities based on ISCCP data sets. 1. Method and sensitivity to input data uncertainties. J Geophys Res, 1995, 100(D1): 1149–1165

    Article  Google Scholar 

  30. Zhang Y C, Rossow W B, Lacis A A, et al. Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets—refinements of the radiative transfer model and the input data. J Geophys Res, 2004, 109: D19105, doi: 10.1029/2003JD004457

    Article  Google Scholar 

  31. Lu N, Liu R, Liu J, et al. An algorithm for estimating downward shortwave radiation from GMS 5 visible imagery and its evaluation over China. J Geophys Res, 2010, 115: D18102, doi: 10.1029/2009JD013457

    Article  Google Scholar 

  32. Lu N, Qin J, Yang K, et al. A simple and efficient algorithm to estimate daily global solar radiation from geostationary satellite data. Energy, 2011, 36: 3179–3188, doi: 10.1016/j.energy.2011.03.007

    Article  Google Scholar 

  33. Shi G Y, Hayasaka T, Ohmura A, et al. Data quality assessment and the long-term trend of ground solar radiation in China. J Appl Meteor Climatol, 2008, 47: 1006–1016

    Article  Google Scholar 

  34. Tang W J, Yang K, He J, et al. Quality control and estimation of global solar radiation in China. Sol Energy, 2010, 84: 466–475

    Article  Google Scholar 

  35. Yang K, Huang G W, Tamai N. A hybrid model for estimating global solar radiation. Sol Energy, 2001, 70: 13–22

    Article  Google Scholar 

  36. Cox S J, Stackhouse P W, Gupta S K, et al. The NASA/GEWEX surface radiation budget project—Overview and analysis. In: The 12th Conference on Atmospheric Radiation, Madison, Wisconsin, USA, 2006, 10–14 July

    Google Scholar 

  37. Tang W J, Yang K, Qin J, et al. Solar radiation trend across China in recent decades: A revisit with quality-controlled data. Atmos Chem Phys, 2011, 11: 393–406, doi: 10.5194/acp-11-393-2011

    Article  Google Scholar 

  38. Hornik K. Approximation capabilities of multilayer feedforward networks. Neural Networks, 1991, 4: 251–257

    Article  Google Scholar 

  39. Qin J, Chen Z Q, Yang K, et al. Estimation of monthly mean daily global solar radiation based on MODIS and TRMM products over the Tibetan Plateau and its surroundings. Appl Energy, 2011, 88: 2480–2489

    Article  Google Scholar 

  40. Demuth H, Beale M, Hagan M. Neural Network Toolbox 6 User Guide, 2008

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WenJun Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, W., Yang, K., Qin, J. et al. Development of a 50-year daily surface solar radiation dataset over China. Sci. China Earth Sci. 56, 1555–1565 (2013). https://doi.org/10.1007/s11430-012-4542-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-012-4542-9

Keywords

Navigation