Use of Empirical Regression and Artificial Neural Network Models for Estimation of Global Solar Radiation in Dubai, UAE

  • Chapter
  • First Online:
Causes, Impacts and Solutions to Global Warming

Abstract

The geographical location of the United Arab Emirates (UAE) (latitude between 26° and 32° North and longitude between 51° and 56° East) favors the development and utilization of solar energy. This chapter presents estimation models for the global solar radiation (GSR) in Dubai, UAE. It compares between six empirical regression models and the best of 11 different configurations of artificial neural network (ANN) models. The models have been developed using measured average daily GSR data for 7 years (2002–2008) while the measured data for the years 2009–2010 are used for testing the models. Results of monthly average daily GSR data of all the empirical models for the test period 2009–2010 yield low statistical error parameters and coefficients of determination (R2) better than 96 %. Comparison with ANN models and Solar Radiation (SoDa) Web site data shows that the optimal multilayer perceptron (MLP) ANN model is the best with R2 = 98 %, and with the lowest statistical error parameters. The results also confirm that a simple linear regression model provides a very good estimation for monthly and daily average GSR data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

xj :

Inputs of ANN

wij :

Weights of ANN

yj :

Outputs of ANN

f:

Activation function

netj :

Total weighted sum of input signals to neuron j

yj (t) :

Target output for neuron j

xcj :

Center of the radial basis function

Σ:

Summation function

ωs :

Mean sunrise hour angle in radians

ϕ:

Latitude in radians

δ:

Declination angle in radians

η:

Learning rate

σj :

A factor that depends on whether neuron j is an output/hidden neuron

μ:

Momentum coefficient

φj(x):

Hidden layer output (activation function) for RBF ANN

ANN:

Artificial Neural Network

G0 :

Extraterrestrial solar radiation on a horizontal surface (kWh/m2)

GIS:

Geographical Information System

GSR:

Mean daily Global Solar Radiation (kWh/m2)

MABE:

Mean Absolute Bias Error (kWh/m2)

MAPE:

Mean Absolute Percent Error

MBE:

Mean Bias Error (kWh/m2)

MLP:

Multilayer Perceptron

NASA:

National Aeronautics and Space Administration

R2 :

Coefficient of Determination

RBF:

Radial Basis Function

RGSR:

Clearness coefficient

RH:

Relative Humidity ( % )

RMSE:

Root-Mean-Square Error (kWh/m2)

RSSH:

Sunshine duration ratio

RREX:

Renewable energy Resource EXplorer

S0 :

Theoretical maximum sunshine hours

SoDa:

Solar radiation Data

SSE:

Solar meteorology and Solar Energy

SSH:

Mean daily Sunshine Hours

SWERA:

Solar and Wind Energy Resource Assessment

T:

Maximum air Temperature (degrees Celsius)

UAE:

United Arab Emirates

W:

Average Wind Speed (knots)

References

  1. International Energy Agency (IEA Statistics © OECD/IEA, http://www.iea.org/stats/index.asp), Energy Statistics and Balances of Non-OECD Countries and Energy Statistics of OECD Countries (http://www.indexmundi.com/facts/united-arab-emirates/electric-power-consumption#EG.USE.ELEC.KH)

  2. Rahman S (2012) UAE power capacity outpaces demand. http://gulfnews.com/business/economy/uae-power-capacity-outpaces-demand-1.1068506, August 31

  3. Assi A, Jama M (2010) Estimating global solar radiation on horizontal from sunshine hours in Abu Dhabi—UAE. In: Proceedings of the 4th International conference on renewable energy sources (RES’10), 101–108, Sousse, Tunisia, 03–06 May 2010

    Google Scholar 

  4. Assi A, Jama M, Al-Shamisi M (2012) Prediction of Global Solar Radiation in Abu Dhabi. ISRN Renew Energy, 2012: 10, doi:10.5402/2012/328237

  5. Hejase HAN, Assi AH (2011) MATLAB-assisted regression modeling of mean daily global solar radiation in Al-Ain, UAE. In: Assi AH (ed) Engineering education and research using MATLAB. Intech, New York, pp 195–218

    Google Scholar 

  6. Al-Shamisi MH, Assi AH, Hejase HAN (2011) Using MATLAB to develop artificial neural network models for predicting global solar radiation in Al Ain City—UAE. In: Assi AH (ed) Engineering education and research using MATLAB. Intech, New York, pp 219–238

    Google Scholar 

  7. Assi A, Al-Shamisi M (2010) Prediction of monthly average daily global solar radiation in Al Ain City–UAE using artificial neural networks. In: Proceedings of the 25th European photovoltaic solar energy conference, 508–512, Valencia, Spain, 06–10 September 2010

    Google Scholar 

  8. Assi A, Al-Shamisi M, Jama M (2010) Prediction of monthly average daily global solar radiation in Al Ain City–UAE using artificial neural networks. In: Proceedings of the 4th International conference on renewable energy sources (RES’10), 109–113, Sousse, Tunisia, 03–06 May 2010

    Google Scholar 

  9. Hejase HAN, Assi AH (2012) Time-series regression model for prediction of mean daily global solar radiation in Al-Ain, UAE. ISRN Renew Energy, 2012:11 2012. doi:10.5402/2012/412471

  10. Al Shamisi MH, Assi AH, Hejase HAN (2012) Artificial Neural Network Modeling of Global Solar Radiation. Accepted for publication, Int J Green Energy, Taylor and Francis publisher, posted online Feb, 22, 2012. doi:10.1080/15435075.2011.641187

  11. Abdalla YAG, Feregh GM (1988) Contribution to the study of solar radiation in Abu Dhabi. Energy Convers Manag 28(1):63–67

    Article  Google Scholar 

  12. Akinoglu BG, Ecevit A (1990) A further comparison and discussion of sunshine based models to estimate global solar radiation. Energy 15:865–872

    Article  Google Scholar 

  13. Al Mahdi N, Al Baharna NS, Zaki FF (1992) Assessment of solar radiation models for Gulf Arabian countries. Renew Energy 2(1):65–71

    Article  Google Scholar 

  14. Ampratwum DB, Dorvlo ASS (1999) Estimation of solar radiation from the number of sunshine hours. Appl Energy 63:161–167

    Article  Google Scholar 

  15. Elagib N, Mansell MG (2000) New approaches for estimating global solar radiation across Sudan. Energy Convers Manag 41:419–434

    Article  Google Scholar 

  16. Falayi EO, Adepitan JO, Rabiu AB (2008) Empirical models for the correlation of global solar radiation with meteorological data for Iseyin, Nigeria. Int J Phys Sci 3:210–216

    Google Scholar 

  17. Fortin J, Anctil F, Parent L, Bolinder M (2008) Comparison of empirical daily surface incoming solar radiation models. Agric For Meteorol 148:1332–1340

    Article  Google Scholar 

  18. Khalil A, Alnajjar A (1995) Experimental and theoretical investigation of global and diffuse solar radiation in the United Arab Emirates. Renew Energy 6(5–6):537–543

    Article  Google Scholar 

  19. Menges HO, Ertekin C, Sonmete MH (2006) Evaluation of solar radiation models for Konya, Turkey. Energy Convers Manag 47:3149–3173

    Article  Google Scholar 

  20. Newland FJ (1988) A study of solar radiation models for the coastal region of south China. Sol Energy 31:227–235

    Google Scholar 

  21. Podestá G, Núñez L, Villanueva C, Skanski M (2004) Estimating daily solar radiation in the Argentine Pampas. Agric For Meteorol 123:41–53

    Article  Google Scholar 

  22. Şahin AD (2007) A new formulation for solar irradiation and sunshine duration estimation. Int J Energy Res 31:109–118

    Article  Google Scholar 

  23. Samuel T (1991) Estimation of solar radiation for Sri Lanka. Sol Energy 47:333–337

    Article  Google Scholar 

  24. Ulgen K, Hepbasli A (2002) Comparison of solar radiation correlations for Izmir, Turkey. Int J Energy Res 26:413–430

    Article  Google Scholar 

  25. Al-Alawi S, Al-Hinai H (1998) An ANN-based Approach for Predicting Global Solar Radiation in Locations with no Measurements. Renew Energy 14:199–204

    Article  Google Scholar 

  26. Behrang MA, Assareh E, Ghanbarzadeh A, Noghrehabadi AR (2010) The potential of different artificial neural network (ANN) techniques in daily global solar radiation modeling based on meteorological data. Sol Energy 84:1468–1480

    Article  Google Scholar 

  27. Benghanem M, Mellit A, Alamri SN (2009) ANN-based modeling and estimation of daily global solar radiation data: a case study. Energy Convers Manag 50:1644–1655

    Article  Google Scholar 

  28. Boccol M, Willington E, Arias M (2010) Comparison of regression and neural networks models to estimate solar radiation. Chilean J Agri Res 70:428–435

    Google Scholar 

  29. Elminir H, Areed F, Elsayed T (2005) Estimation of solar radiation components incident on Helwan site using neural networks. Sol Energy 79:270–279

    Article  Google Scholar 

  30. Kassem AS, Aboukarima AM, El Ashmawy NM (2009) Development of neural network model to estimate hourly total and diffuse solar radiation on horizontal surface at Alexandria city (Egypt). J Appl Sci Res 5:2006–2015

    Google Scholar 

  31. Krishnaiah T, Srinivasa S, Madhumurthy K, Reddy KS (2007) A neural network approach for modelling global solar radiation. J Appl Sci Res 3(10):1105–1111

    Google Scholar 

  32. Mohandes M, Balghonaim A, Kassas M, Rehman S, Halawani TO (2000) Use of radial basis functions for estimating monthly mean daily solar radiation. Sol Energy 68(2):161–168

    Article  Google Scholar 

  33. Mohandes M, Rehman S, Halawani TO (1998) Estimation of global solar radiation using artificial neural networks. Renew Energy 14:179–184

    Article  Google Scholar 

  34. Rehman S, Mohandes M (2008) Artificial neural network estimation of global solar radiation using air temperature and relative humidity. Energy Policy 36:571–576

    Article  Google Scholar 

  35. Lam JC, Wan KKW, Liu Y (2008) Solar radiation modeling using ANNs for different climates in China. Energy Convers Manag 49:1080–1090

    Article  Google Scholar 

  36. Mubiru J (2008) Predicting total solar irradiation values using artificial neural networks. Renew Energy 33(10):2329–2332

    Article  Google Scholar 

  37. SoDa: a Web service on solar radiation, http://www.soda-is.com/eng/index.html. Accessed 10 June 2012

  38. Haykin S (2009) Neural networks and learning machines. Pearson Education, Inc., New Jersey

    Google Scholar 

  39. Yang J, Rivard H, Zmeureanu R (2005) Building Energy Predication with Adaptive Artificial Neural Networks. Ninth International IBPSA Conference Montréal 15–18

    Google Scholar 

  40. Chantasut N, Charoenjit C, Tanprasert C (2004) Predictive mining of rainfall predictions using artificial neural networks for Chao Phraya River. In: 4th International conference of the asian federation of information technology in agriculture and the 2nd world congress on computers in agriculture and natural resources 9–12.

    Google Scholar 

  41. Jain A, Mao J, Mohiuddin K (1996) Artificial neural networks: a tutorial. Computer 29(3):31–44

    Article  Google Scholar 

  42. Jayawardena AW, Fernando DAK (1998) Use of radial basis function type artificial neural networks for runoff simulation. Computer-Aided Civil Infrastruct Eng 13:91–99. doi:10.1111/0885-9507.00089

    Article  Google Scholar 

  43. Assi AH, Al-Shamisi MH, Hejase HAN (2012) Solar radiation in UAE—a comparison between ground station measurements and satellite estimation. In: Proceedings of the global conference on global warming 2012 (GCGW-2012), CD-ROM, Istanbul, Turkey, July 8–12

    Google Scholar 

  44. Surface meteorology and Solar Energy (SSE) Release 6.0, http://eosweb.larc.nasa.gov/sse/. Accessed on 13 Oct 2012

  45. Solar and Wind Energy Resource Assessment (SWERA)—A United Nations environment programme facilitated effort. http://en.openei.org/apps/SWERA/. Accessed 10 June 2012

  46. http://meteonorm.com/.

  47. SolarGIS: http://geomodelsolar.eu/solar-radiation-data.

  48. MATLAB (2010), version 7.10.0.499 (R 2010 a). The MathWorks Inc.

    Google Scholar 

  49. IBM SPSS Statistics for Windows (2010), Version 19.0.0, SPSS Inc.

    Google Scholar 

  50. Al-Shamisi MH, Assi AH, Hejase HAN (2012) Using artificial neural networks to predict global solar radiation in Dubai City (UAE). In: Proceedings of the 2nd International conference on renewable energy: generation and applications (ICREGA 2012), CD-ROM, Al-Ain, UAE, March 4–7

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Center for Meteorology and Seismology (NCMS), Abu Dhabi for providing the weather data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan A. N. Hejase .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hejase, H.A.N., Assi, A.H., Shamisi, M.H.A. (2013). Use of Empirical Regression and Artificial Neural Network Models for Estimation of Global Solar Radiation in Dubai, UAE. In: Dincer, I., Colpan, C., Kadioglu, F. (eds) Causes, Impacts and Solutions to Global Warming. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7588-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7588-0_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7587-3

  • Online ISBN: 978-1-4614-7588-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics

Navigation