Log in

Hazardous metal pollution in a protected coastal area from Northern Patagonia (Argentina)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The San Antonio Bay is a protected natural coastal area of Argentina that has been exposed to mining wastes over the last three decades. Iron and trace metals of potential concern to biota and human health (Cd, Pb, Cu, and Zn) were investigated in the sediments from the bay and in the soils of the Pile (mining wastes). Concentrations of Cd (45 mg kg−1), Pb (42,853 mg kg−1), Cu (24,505 mg kg−1), and Zn (28,686 mg kg−1) in the soils Pile exceeded guidelines for agricultural, residential, and industrial land uses. Risk assessment due to exposure to contaminated soils (Pile) was performed. Hazard quotients were superior to non-risk (HQ >1) for all trace metals, while accumulative hazard quotient index indicated a high risk for children (HI = 93) and moderate for adults (HI = 9). In the bay, sediments closest to the Pile (mudflat and salt marsh) exceeded sediment quality guidelines for protection of biota. Results of different acid extraction methods suggest that most of the pseudototal content was potentially mobile. Principal component analysis indicated that the sites near the Pile (Encerrado channel) were more polluted than the distal ones. Tissues of Spartina spp. located within Encerrado channel showed the highest metal levels among all studied sites. These results show that the problem still persists and the mining wastes are the sources of the pollution. Furthermore, the Encerrado channel is a highly impacted area, as it is shown by their metal enriched sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • ACS, RFF (1998) Understanding risk analysis. A short guide for health, safety and environmental policy making. Internet Edition. A Publication of the American Chemical Society (ACS) and Resources for the Future (RFF) - written by M. Boroush, ACS, Washington, DC.

  • Agemian H, Chau A (1976) Evaluation of extraction techniques for the determination of metals in aquatic sediments. Analyst 101(1207):761–767

    Article  CAS  Google Scholar 

  • Alberts JJ, Price MT, Kania M (1990) Metal concentrations in tissues of Spartina alterniflora (Loisel) and sediments of Georgia saltmarshes. Estuar Coastal Shelf S 30:47–58

    Article  CAS  Google Scholar 

  • Aliotta S, Schnack EJ, Isla FI, Lizasoain GO (2000) Desarrollo secuencial de forma de fondo en un régimen macromareal. Asociación Argentina de Sedimentación 7(1–2):95–107

    Google Scholar 

  • Almeida CMR, Mucha AP, Vasconcelos MT (2011) Role of different saltmarsh plants on metal retention in an urban estuary (Lima Estuary, NW Portugal). Estuar Coast Shelf S 91:243–249

    Article  CAS  Google Scholar 

  • Anjum NA, Ahmad I, Válega M, Mohmood I, Gill SS, Tuteja N, Duarte AC, Pereira E (2013) Salt marsh halophyte services to metal-metalloid remediation: assessment of the processes and underlying mechanisms. Environ SciTechnol 44:2038–2106

    Google Scholar 

  • Bas C, Luppi T, Spivak E (2005) Population structure of the South American estuarine crab, Chasmagnathus granulatus (Brachyura: Varunidae) near the southern limit of its geographical distribution: comparison with northern populations. Hydrobiologia 537:217–228

    Article  Google Scholar 

  • Beck M, Böning P, Schükel U, Stiehl T, Schnetger B, Rullkötter J, Brumsack HJ (2013) Consistent assessment of trace metal contamination in surface sediments and suspended particulate matter: a case from the Jade Bay in NW Germany. Mar Pollut Bull 70:100–111

    Article  CAS  Google Scholar 

  • Bonuccelli R, Malán J, Luna L, Torres L (2004) Contaminación por metales pesados derivados de la lixiviación de escorias de fundición. San Antonio Oeste. Río Negro. IBMP Serie Publicaciones N° 3: 63–66.

  • Bortolus A (2006) The austral cordgrass Spartina densiflora Brong: its taxonomy, biogeography and natural history. J Biogeogr 33:158–168

    Article  Google Scholar 

  • Bortolus A, Laterra P, Iribarne O (2004) Crab-mediated phenotypic changes in Spartina densiflora Brong. Estuar Coast Shelf S 59:97–107

    Article  Google Scholar 

  • Burke DJ, Weis JS, Weis P (2000) Release of metals by the leaves of the salt marsh grasses Spartina alterniflora and Phragmites australis. Estuar Coast Shelf S 51:153–159

    Article  CAS  Google Scholar 

  • Byers SC, Mills EL, Stewart PL (1978) A comparison of methods of determining organic carbon in marine sediments, with suggestions for a standard method. Hydrobiologia 58:43–47

    Article  CAS  Google Scholar 

  • Caçador I, Caetano M, Duarte B, Vale C (2009) Stock and losses of trace metals from salt marsh plants. Mar Environ Res 67:75–82

    Article  Google Scholar 

  • Caetano M, Vale C, Cesário R, Fonseca N (2008) Evidence for preferential depths of metal retention in roots of salt marsh plants. Sci Total Environ 390:466–474

    Article  CAS  Google Scholar 

  • Cambrollé J, Mateos-Naranjo E, Redondo-Gómez S, Luque T, Figueroa ME (2011) The role of two Spartina species in phytostabilization and bioaccumulation of Co, Cr, and Ni in the Tinto-Odiel estuary (SW Spain). Hydrobiologia 671:95–103

    Article  Google Scholar 

  • Cambrollé J, Redondo-Gómez S, Mateos-Naranjo E, Figueroa ME (2008) Comparison of the role of two Spartina species in terms of phytostabilization and bioaccumulation of metals in the estuarine sediment. Mar Pollut Bull 56:2037–2042

    Article  Google Scholar 

  • Carbone ME, Melo WD, Piccolo MC (2014) Procesos ambientales que afectan la bahía San Antonio y su área de adyacencia (Prov. de Rio Negro). Huellas n°18: 132–144.

  • CCME, Canadian Council of Ministers of the. Environment (2001) Canadian sediment quality guidelines for the protection of aquatic life. In: Canadian Environmental Quality Guidelines, 1999. http://www.ccme.ca/en/resources/canadian_environmental_quality_guidelines. Winnipeg. Summary Table Last Updated 2002. Accessed March 2016.

  • Clements SM, Palmgren MG, Krämer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7(7):309–315

    Article  Google Scholar 

  • Clevenger TE (1990) Use of sequential extraction to evaluate the heavy metals in mining wastes. Water Air Soil Poll 50:241–254

    Article  CAS  Google Scholar 

  • Couto T, Duarte B, Barroso D, Caçador I, Marques JC (2013) Halophytes as sources of metals in estuarine systems with low levels of contamination. Funtional Plant Biology. doi:10.1071/FP12300

    Google Scholar 

  • Curado G, Rubio-Casal AE, Figueroa E, Castillo JM (2014) Potential of Spartina maritima in restored salt marshes for phytoremediation of metals in a highly polluted estuary. International Journal of Phytoremediation 16:1209–1220

    Article  CAS  Google Scholar 

  • De Lacerda LD, Carvalho CEV, Tanizaki KF, Ovalle ARC, Rezende CE (1993) The biogeochemistry and trace metals distribution of mangrove rhizospheres. Biotropica 25(3):252–257

    Article  Google Scholar 

  • De Pietri DE, García S, Rico O (2008) Modelos geo-espaciales para la vigilancia local de la salud. Rev Panam Salud Pública 23(6):394–402

    Article  Google Scholar 

  • Duarte B, Almeida PR, Caçador I (2009) Spartina maritima (cordgrass) rhizosediment extracellular enzymatic activity and its role in organic matter decomposition processes and metal speciation. Mar Ecol 30(1):65–73

    Article  Google Scholar 

  • Fitzgerald EJ, Caffrey JM, Nesaratnam ST, McLoughlin P (2003) Copper and lead concentrations in salt marsh plants on the Suir Estuary, Ireland. Environ Poll 123:67–74

    Article  CAS  Google Scholar 

  • Fucks EE, Schnack EJ, Charó M (2012) Aspectos geológicos y geomorfológicos del sector N del Golfo San Matías, Río Negro, Argentina. Rev Soc Geol España 25(1–2):95–105

    Google Scholar 

  • Gil MN, Harvey M, Esteves JL (1999) Heavy metals in intertidal sediments from Patagonian coast, Argentina. Bull Environ Cont Toxicol 63:52–58

    Article  CAS  Google Scholar 

  • Gil MN, Torres AI, Harvey M, Esteves JL (2006) Metales pesados en organismos marinos de la zona costera de la Patagonia Argentina Continental. Rev Biol Mar Ocean 41(2):167–176

    Google Scholar 

  • Gupta S, Nayek S, Saha RN, Satpati S (2008) Assessment of heavy metal accumulation in macrophyte, agricultural soil, and crop plants adjacent to discharge zone of sponge iron factory. Environ Geol 55:731–739

    Article  CAS  Google Scholar 

  • Hempel M, Botté SE, Negrin VL, Chiarello MN, Marcovecchio JE (2008) The role of the smooth cordgrass Spartina alterniflora and associated sediments in the heavy metal biogeochemical cycle within Bahía Blanca estuary salt marshes. J Soils Sediments 8:289–297

    Article  CAS  Google Scholar 

  • Hung GA, Chmura GL (2007) Metal accumulation in surface salt marsh sediments of the Bay of Fundy, Canada. Estuar Coasts 30(4):725–734

    Article  CAS  Google Scholar 

  • Idaszkin YL, Bouza PJ, Marinho CH, Gil MN (2014) Trace metal concentrations in Spartina densiflora and associated soil from a Patagonian salt marsh. Mar Pollut Bull 89:444–450

    Article  CAS  Google Scholar 

  • Idaszkin YL, Lancelotti JL, Bouza PJ, Marcovecchio JE (2015) Accumulation and distribution of trace metals within soils and the austral cordgrass Spartina densiflora in a Patagonian salt marsh. Mar Pollut Bull 101(1):457–465

    Article  CAS  Google Scholar 

  • Isacch JP, Costa CSB, Rodríguez Gallego L, Conde D, Escapa M, Gagliardini DA, Iribarne OO (2006) Distribution of salt marsh plant communities associated with environmental factors along a latitudinal gradient on the south-west Atlantic coast. J Biogeogr 33:888–900

    Article  Google Scholar 

  • ISO, International Standard (1995) ISO 11466. Soil quailty: extraction of trace elements soluble in aqua regia.

  • Jayaprakash M, Jonathan MP, Srinivasalu S, Muthuraj S, Ram-Mohan V, Rajeshwara-Rao N (2008) Acid-leachable trace metals in sediments from and industrialized region (Ennore Creek) of Chennai City, SE coast of India: an approach towards regular monitoring. Estuar Coast Shelf S 76:692–703

    Article  CAS  Google Scholar 

  • Kabata-Pendias A (2011) Trace elements in soils and plants. 4th Edition. pp 505.

  • Law N° 24051 (1992) Hazardous wastes. Santioned: 12/17/1991. Enacted: 01/08/1992.

  • Law N° 2670 (1993) Sanctioned: 07/29/1993. Enacted: 08/28/1993- Decree N° 1258. Official Bulletin: N° 3091.

  • Lee CG, Chon HT, Jung MC (2001) Heavy metal contamination in the vicinity of the Daduk Au-Ag-Pb-Zn mine in Korea. Appl Geochem 16:1377–1386

    Article  CAS  Google Scholar 

  • Lemly AD (1996) Evaluation of the hazard quotient method for risk assessment of selenium. Ecotox Environ Safe 35:156–162

    Article  CAS  Google Scholar 

  • Lo Russo V (2012) Tesis de Doctorado: Comparación de comunidades de nematodos de marismas de San Antonio Oeste (Río Negro) y San Julián (Santa Cruz). Universidad Nacional del Comahue. Pp 202.

  • Luppi T, Bas C, Mendez-Casariego A, Albano M, Lancia J, Kittlein M, Rosenthal A, Farias N, Spivak N, Iribarne O (2013) The influence of habitat, season and tidal regime in the activity of the intertidal crab Neohelice (Chasmagnathus) granulata. Helgol Mar Res 67:1–15

    Article  Google Scholar 

  • Luque CJ, Castellanos EM, Castillo JM, Gonzalez M, Gonzalez-Vilchez MC, Figueroa ME (1999) Metals in halophytes contaminated estuary (Odiel saltmarshes, SW Spain). Mar Pollut Bull 38(1):49–51

    Article  CAS  Google Scholar 

  • MacGrath SP, Cunliffe CH (1985) A simplified method for the extraction of the metals Fe, Zn, Cu, Ni, Cd, Pb, Cr, Co and Mn from soils and sludges. J Sc Food Agr 36:794–798

    Article  Google Scholar 

  • Marchand L, Mench M, Jacob DL, Otte ML (2010) Metal and metalloid removal in constructed wetlands, with emphasis on the importance of plants and standardized measurements: a review. Environ Pollut 158:3447–3461

    Article  CAS  Google Scholar 

  • Montemayor DI, Canepuccia AD, Pascual J, Iribarne OO (2014) Aboveground biomass pattern of dominant Spartina species and their relationship with selected abiotic variables in Argentinian SW Atlantic marshes. Estuar Coasts 37:411–420

    Article  Google Scholar 

  • Mucha AP, Almeida CMR, Bordalo AA, Vasconcelos MT (2005) Exudation of organic acids by a marsh plant and implications on trace metal availability in the rhizosphere of estuarine sediments. Estuar Coast Shelf S 65:191–198

    Article  CAS  Google Scholar 

  • Otte ML, Bestebroer SJ, van der Linden JM, Rozema J, Broekman RA (1991) A survey of zinc, copper and cadmium concentrations in salt marsh plants along the Dutch coast. Environ Pollut 72:175–189

    Article  CAS  Google Scholar 

  • Phillips DP, Human LRD, Adams JB (2015) Wetland plants as indicators of heavy metal contamination. Mar Pollut Bull 92(1–2):227–232

    Article  CAS  Google Scholar 

  • Prassad MNV, Sajwan KS, Naidu R (Eds) (2006) Trace elements in the environment: biogeochemistry, biotechnology, and bioremediation. 1st Edition. pp. 706.

  • Quan WM, Han JD, Shen AL, ** XY, Qian PL, Li CJ, Shi LY, Chen YQ (2007) Uptake and distribution of N, P and heavy metals in three dominant salt marsh macrophytes from Yangtze River estuary, China. Mar Environ Res 64:21–37

    Article  CAS  Google Scholar 

  • RAIS, Risk Assessment Information. System, 2008. http://rais.ornl.gov/tools/tox_profiles.html. Accessed March 2016.

  • Reboreda R, Caçador I (2007) Halophyte vegetation influences in salt marsh retention capacity for heavy metals. Environ Pollut 146:147–154

    Article  CAS  Google Scholar 

  • Redondo Gómez S (2013) Bioaccumulation of heavy metals in Spartina. Funct Plant Biol 40:913–921

    Google Scholar 

  • Smith KS (2007) Strategies to predict metal mobility in surficial mining environments. In DeGraff, J.V. (Ed.), Understanding and responding to hazardous substances at mine sites in the Western United States: Geological Society of America Reviews in Engineering Geology, v. XVII. pp. 25–45.

  • Sundby B, Vale C, Caçador I, Catarino F, Madureira M, Caetano M (1998) Metal-rich concretions on the roots of salt marsh plants: mechanism and rate of formation. Limnol Oceanogr 43:245–252

    Article  CAS  Google Scholar 

  • Vale C, Catarino FM, Cortesão C, Caçador MI (1990) Presence of metal-rich rhizoconcretions on the roots of Spartina maritima from the salt marshes of the Tagus Estuary, Portugal. Sci Total Environ 97(98):617–626

    Article  Google Scholar 

  • Vázquez N, Gil MN, Esteves JL, Narvarte M (2007) Monitoring heavy metal pollution in San Antonio Bay, Río Negro, Argentina. Bull Environ Cont and Toxicol 79:121–125

    Article  Google Scholar 

  • Weis JS, Weis P (2004) Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environ Int 30:685–700

    Article  CAS  Google Scholar 

  • Williams TP, Bubb JM, Lester JN (1994) Metal accumulation within salt marsh environments: a review. Mar Pollut Bull 28(5):277–290

    Article  CAS  Google Scholar 

  • Windham L, Weis JS, Weis P (2003) Uptake and distribution of metals in two dominant salt marsh macrophytes, Spartina alterniflora (cordgrass) and Phragmites australis (common reed). Estuar Coastal Shelf S 56:63–72

    Article  CAS  Google Scholar 

  • Yoon J, Cao X, Zhou Q, Ma LQ (2006) Accumulation of Pb, Cu, and Zn in native plant growing on a contaminated Florida site. Sci Total Environ 368:456–464

    Article  CAS  Google Scholar 

  • Yoong K (1998) Chapter 24: determination of cadmium, chromium, cobalt, lead, and nickel in plant tissue. In Handbook of reference methods for plant analysis. Kalra YP (Ed.). pp. 193–198.

  • Zabin SA, Howladar SM (2015) Heavy metals contamination and its healt risk assessment in the sediments of water reservoir dams at Al-Baha Region, KSA. Environmental Science: An Indian Journal 10(6):224-230

  • Zhang C, Yu Z, Zeng G, Jiang M, Yang Z, Cui F, Zhu M, Shen L, Hu L (2014) Effects of sediment geochemical properties on heavy metal bioavailability. Environ Int 73:270–281

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been carried out in the framework of the doctoral thesis of the B.S. Carmen Marinho (Universidad Nacional del Comahue). C.M. was supported by a doctoral scholarship from CONICET. Mr. Bernabé Urtubey kindly has reviewed the English version of this manuscript. We thank anonymous reviewers for their valuable suggestions and corrections on previous versions of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. H. Marinho.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marinho, C.H., Giarratano, E., Esteves, J.L. et al. Hazardous metal pollution in a protected coastal area from Northern Patagonia (Argentina). Environ Sci Pollut Res 24, 6724–6735 (2017). https://doi.org/10.1007/s11356-017-8393-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8393-y

Keywords

Navigation