Log in

The role of two Spartina species in phytostabilization and bioaccumulation of Co, Cr, and Ni in the Tinto–Odiel estuary (SW Spain)

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Vascular plants in salt marshes strongly influence processes of heavy metal accumulation. Many studies have focused on this issue; however, there is a lack of information regarding the effects of plants on the distribution of certain poorly studied metals, such as Co, Cr, and Ni. The aim of this study was to comparatively evaluate the capability of Spartina densiflora Brongn. and Spartina maritima (Curtis) Fernald, to accumulate Co, Cr, and Ni and influence the sediment composition around their roots, investigating whether the observed behavior can change with different levels of sediment pollution. Concentrations of Co, Cr, and Ni were determined in tissues of S. densiflora and S. maritima and in sediments and rhizosediments from the Odiel and Tinto marshes (SW Spain), one of the estuaries most polluted by heavy metals in the world. Concentrations of Co, Cr, and Ni in the belowground tissues of both Spartina species were higher than those in aboveground tissues in all sites sampled. Both species showed potential for phytostabilization of Co, possibly by promoting the formation of high amounts of Fe-oxides in the rhizosphere, which can act to retain the metal within the sediment around the roots. In addition, both Spartina species were found to accumulate Co in their roots, thereby avoiding the translocation of this metal to photosynthetic tissues. At the Tinto marsh, there were no differences recorded in metal levels between sediments and rhizosediments of both species, a fact that could be explained by the extremely high background levels of metals at this site, which may impair the ability of the plant to alter the chemistry of the sediment in contact with the roots. The potential for the immobilization of a large amount of Co in the soil, exhibited by S. densiflora and S. maritima, indicates that both species could be highly useful in the phytostabilization of Co contaminated environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alberts, J. J., M. T. Price & M. Kania, 1990. Metal concentrations in tissues of Spartina alterniflora (Loisel.) and sediments of Georgia salt marshes. Estuarine, Coastal and Shelf Science 30: 47–58.

    Article  CAS  Google Scholar 

  • Almeida, C. M., A. P. Mucha & M. T. Vasconcelos, 2004. Influence of the sea rush Juncus maritimus on metal concentration and speciation in estuarine sediment colonized by the plant. Environmental Science and Technology 38: 3112–3118.

    Article  PubMed  CAS  Google Scholar 

  • Almeida, C. M. R., A. P. Mucha & M. T. S. D. Vasconcelos, 2006. Comparison of the role of the sea club-rush Scirpus maritimus and the sea rush Juncus maritimus in terms of concentration, speciation and bioaccumulation of metals in the estuarine sediment. Environmental Pollution 142: 151–159.

    Article  PubMed  CAS  Google Scholar 

  • Bolt, G. H. & M. G. M. Bruggenwert, 1976. Soil Chemistry. A. Basic Elements. Elsevier, Amsterdam.

    Google Scholar 

  • Bortolus, A., 2006. The austral cordgrass Spartina densiflora Brong.: its taxonomy, biogeography and natural history. Journal of Biogeography 33: 158–168.

    Article  Google Scholar 

  • Bouyoucos, G. J., 1936. Directions for making mechanical analysis of soils by the hydrometer method. Soil Science 42: 225–228.

    Article  CAS  Google Scholar 

  • Bowen, H. J. M., 1979. Environmental Chemistry of the Elements. Academic Press, New York.

    Google Scholar 

  • Breteler, R. J. & J. M. Teal, 1981. Trace element enrichments in decomposing litter of Spartina alterniflora. Aquatic Botany 11: 111–120.

    Article  CAS  Google Scholar 

  • Burke, D. J., J. S. Weis & P. Weis, 2000. Release of metals by the leaves of the salt marsh grasses Spartina alterniflora and Phragmites australis. Estuarine, Coastal Shelf Science 51: 153–159.

    Article  CAS  Google Scholar 

  • Caçador, I., C. Vale & F. Catarino, 1996. Accumulation of Zn, Pb, Cu, Cr and Ni in sediments between roots of the Tagus estuary salt marshes, Portugal. Estuarine, Coastal and Shelf Science 42: 393–403.

    Article  Google Scholar 

  • Caçador, I., M. Caetano, B. Duarte & C. Vale, 2009. Stock and losses of trace metals from salt marsh plants. Marine Environmental Research 67: 75–82.

    Article  PubMed  Google Scholar 

  • Caetano, M., C. Vale, R. Cesário & N. Fonseca, 2008. Evidence for preferential depths of metal retention in roots of salt marsh plants. Science of the Total Environment 390: 466–474.

    Article  PubMed  CAS  Google Scholar 

  • Cambrollé, J., S. Redondo-Gómez, E. Mateos-Naranjo & M. E. Figueroa, 2008. Comparison of the role of two Spartina species in terms of phytostabilization and bioaccumulation of metals in the estuarine sediment. Marine Pollution Bulletin 56: 2037–2042.

    Article  PubMed  Google Scholar 

  • Carbonell, A. A., M. A. Aarabi, R. D. DeLaune, R. P. Gambrell & W. H. Patrick Jr, 1998. Bioavailability and uptake of arsenic by wetland vegetation: effects on plant growth and nutrition. Journal of Environmental Science and Health 33: 45–66.

    Article  Google Scholar 

  • Castillo, J. M., L. Fernández-Baco, E. M. Castellanos, C. J. Luque, M. E. Figueroa & A. J. Davy, 2000. Lower limits of Spartina densiflora and S. maritima in the salt-marsh tidal frame determined by differential ecophysiological tolerances. Journal of Ecology 88: 801–812.

    Article  Google Scholar 

  • Cataldo, D. A., T. R. Garland & R. E. Wildung, 1978. Nickel in plants. Plant Physiology 62: 566–570.

    Article  PubMed  CAS  Google Scholar 

  • Comerford, N. B., 2005. Soil factors affecting nutrient bioavailability. In Bassirirad, H. (ed.), Nutrient Acquisition by Plants. An Ecological Perspective, Vol. 181. Springer-Verlag, Heidelberg, Series: Ecological Studies: 1–14.

  • Davis, R. A., A. T. Welty, J. Borrego, J. A. Morales, J. G. Pendón & J. G. Ryan, 2000. Rio Tinto estuary (Spain): 5000 years of pollution. Environmental Geology 39: 1107–1116.

    Article  CAS  Google Scholar 

  • Denny, P., R. Bailey, E. Tukahirwa & P. Mafabi, 1995. Heavy metal contamination of Lake George (Uganda) and its wetlands. Hydrobiologia 297: 229–239.

    Article  CAS  Google Scholar 

  • Echevarria, G., P. C. Vong, E. Leclerc-Cessac & J. L. Morel, 1997. Bioavailability of technetium-99 as affected by plant species and growth, application form, and soil incubation. Journal of Environmental Quality 26: 947–956.

    Article  CAS  Google Scholar 

  • Egal, M., F. Elbaz-Poulichet, C. Casiot, M. Motelica-Heino, P. Négrel, O. Bruneel, A. M. Sarmiento & J. M. Nieto, 2008. Iron isotopes in acid mine waters and iron-rich solids from the Tinto–Odiel Basin (Iberian Pyrite Belt, Southwest Spain). Chemical Geology 253: 162–171.

    Article  CAS  Google Scholar 

  • Figueroa, M. E. & E. M. Castellanos, 1988. Vertical structure of Spartina maritima and Spartina densiflora in Mediterranean marshes. In Werger, M. J. A., P. J. M. van der Aart, H. J. During & J. T. A. Verhoeven (eds), Plant Form and Vegetation Structure. SPB Academic Publishing, The Hague: 105–108.

    Google Scholar 

  • Figueroa, M. E., J. M. Castillo, S. Redondo, T. Luque, E. M. Castellanos, F. J. Nieva, C. J. Luque, A. E. Rubio-Casal & A. J. Davy, 2003. Facilitated invasion by hybridization of Sarcocornia species in a salt-marsh succession. Journal of Ecology 91: 616–626.

    Article  Google Scholar 

  • González-Pérez, J. A., J. R. De Andrés, L. Clemente, J. A. Martín & F. J. González-Vila, 2007. Organic carbon and environmental quality of riverine and off-shore sediments from the Gulf of Cádiz, Spain. Environmental Chemistry Letters 6: 41–46.

    Article  Google Scholar 

  • Hansel, C., S. Fendorf, S. Sutton & M. Newville, 2001. Characterization of Fe plaque and associated metals on the roots of mine-waste impacted aquatic plants. Environmental Science and Technology 35: 3863–3868.

    Article  PubMed  CAS  Google Scholar 

  • Hu, H., 2002. Human health and heavy metals exposure. In McCally, M. (ed.), Life Support: The Environment and Human Health. MIT Press, Cambridge: 65–82.

    Google Scholar 

  • Jacob, D. L. & M. L. Otte, 2003. Conflicting processes in the wetland plant rhizosphere: metal retention or mobilization? Water, Air, and Soil Pollution 3: 91–104.

    CAS  Google Scholar 

  • Kabata-Pendias, A. & H. Pendias, 2001. Trace Elements in Soils and Plants. CRC Press, Florida.

    Google Scholar 

  • Luque, C. J., E. M. Castellanos, J. M. Castillo, M. Gonzalez, M. C. Gonzalez-Vilches & M. E. Figueroa, 1999. Metals in halophytes of a contaminated estuary (Odiel Saltmarshes, SW Spain). Marine Pollution Bulletin 38: 49–51.

    Article  CAS  Google Scholar 

  • Madureira, M. J., C. Vale & M. L. Gonçalves, 1997. Effect of plant on sulphur geochemistry in the Tagus SALT-marshes sediments. Marine Chemistry 58: 27–37.

    Article  CAS  Google Scholar 

  • Mertz, W., E. E. Angino, H. L. Cannon, K. M. Hambidge & A. W. Voors, 1974. Chromium. In Mertz, W. (ed.), Geochemistry and the Environment. N.A.S., Washington, DC: 29–35.

    Google Scholar 

  • Morillo, J., J. Usero & R. Rojas, 2008. Fractionation of metals and As in sediments from a biosphere reserve (Odiel salt marshes) affected by acidic mine drainage. Environmental Monitoring and Assessment 139: 329–337.

    Article  PubMed  CAS  Google Scholar 

  • Nieva, F. J. J., A. Díaz-Espejo, E. M. Castellanos & M. E. Figueroa, 2001. Field variability of invading populations of Spartina densiflora Brong. in different habitats of the Odiel marshes (SW Spain). Estuarine, Coastal and Shelf Science 52: 515–527.

    Article  CAS  Google Scholar 

  • Reboreda, R., I. Caçador, S. Pedro & P. R. Almeida, 2008. Mobility of metals in salt marsh sediments colonised by Spartina maritima (Tagus estuary, Portugal). Hydrobiologia 606: 129–137.

    Article  CAS  Google Scholar 

  • Redondo-Gómez, S., E. Mateos-Naranjo, A. J. Davy, F. Fernández-Muñoz, E. M. Castellanos, T. Luque & M. E. Figueroa, 2007. Growth and photosynthetic responses to salinity of the salt-marsh shrub Atriplex portulacoides. Annals of Botany 100: 555–563.

    Article  PubMed  Google Scholar 

  • Ruiz, F., 2001. Trace metals in estuarine sediments of south-western Spain. Marine Pollution Bulletin 42: 481–489.

    Article  Google Scholar 

  • Sáinz, A. & F. Ruiz, 2006. Influence of the very polluted inputs of the Tinto-Odiel system on the adjacent littoral sediments of southwestern Spain: a statistical approach. Chemosphere 62: 1612–1622.

    Article  PubMed  Google Scholar 

  • Sawidis, T., M. Chettri, G. A. Zazhariadis & J. A. Stratis, 1995. Heavy metals in aquatic plants and sediments from water systems in Macedonia, Greece. Ecotoxicology and Environmental Safety 32: 73–80.

    Article  PubMed  CAS  Google Scholar 

  • Sillanpää, M. & H. Jansson, 1992. Status of cadmium, lead, cobalt and selenium in soils and plants of thirty countries. FAO Soil Bulletin 65.

  • Sneller, F. E., E. C. Noordover, W. Ten Bookem, H. Schat, J. Bedaux & J. Verkleij, 1999. Quantitative relationship between phytochelatin accumulation and growth inhibition during prolonged exposure to cadmium in Silene vulgaris. Ecotoxicology 8: 167–175.

    Article  CAS  Google Scholar 

  • Weis, J. S. & P. Weis, 2004. Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environment International 30: 685–700.

    Article  PubMed  CAS  Google Scholar 

  • Weis, P., L. Windham, D. J. Burke & J. S. Weis, 2002. Release into the environment of metals by two vascular salt marsh plants. Marine Environmental Research 54: 325–329.

    Article  PubMed  CAS  Google Scholar 

  • Weiss, J., M. Hondzo, D. Biesboer & M. Semmens, 2006. Laboratory study of heavy metal phytoremediation by three wetland macrophytes. International Journal of Phytoremediation 8: 245–259.

    Article  PubMed  CAS  Google Scholar 

  • Williams, T. P., J. M. Bubb & J. N. Lester, 1994. Metal accumulation within salt marsh environments: a review. Marine Pollution Bulletin 28: 277–290.

    Article  CAS  Google Scholar 

  • Windham, L., J. S. Weis & P. Weis, 2003. Uptake and distribution of metals in two dominant salt marsh macrophytes, Spartina alterniflora (cordgrass) and Phragmites australis (common reed). Estuarine, Coastal and Shelf Science 56: 63–72.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Mr. K. MacMillan for the revision of the English version of the manuscript. We also thank the Spanish Ministry of Education (FPU programme, AP2007-04420), the Junta de Andalucía for financial support (RMN-224), and the Directorate of the Odiel Marshes Natural Park for their collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Cambrollé.

Additional information

Handling editor: Karen McKee

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cambrollé, J., Mateos-Naranjo, E., Redondo-Gómez, S. et al. The role of two Spartina species in phytostabilization and bioaccumulation of Co, Cr, and Ni in the Tinto–Odiel estuary (SW Spain). Hydrobiologia 671, 95–103 (2011). https://doi.org/10.1007/s10750-011-0706-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-011-0706-4

Keywords

Navigation