Log in

Effect of Zn stresses on physiology, growth, Zn accumulation, and chlorophyll of Phyllostachys pubescen s

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The effects of Zinc (Zn) on lipid peroxidation, antioxidative enzymes, growth, Zn accumulation, and leaf chlorophyll of Phyllostachys pubescens (Pradelle) Mazel ex J.Houz. were investigated in two greenhouse experiments. Hydroponics experiment with Zn application of 0, 20, 100, and 400 μM revealed that lower concentration of Zn in solution led to increased malondialdehyde (MDA) and proline contents but inhibited SOD activity in all treatments. P. pubescens had showed strong ability to accumulate Zn in stems and reached maximum level at 100 μM with 7.91-fold increase compared with control. In pot experiment, treatment with Zn ranged from 0, 200, 400, 800, 1,600, to 3,200 mg kg−1. Application of 800 mg kg−1 revealed 116, 24.6, and 28.3 times increase in Zn concentration of roots, stems, and leaves, respectively. Growth and chlorophyll contents of plants in pots were better promoted at 400 mg kg−1 Zn, with 60.5 and 30.9 % enhanced roots and shoot compared with control. The bioaccumulation factor (BAF) was in the sequence of stem > roots > leaves. The translocation factor (TF) of stem was higher than leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aibibu N, Liu Y, Zeng G et al (2010) Cadmium accumulation in Vetiveria zizanioides and its effects on growth, physiological and biochemical characters. Bioresour Technol 101:6297–6303

    Article  CAS  Google Scholar 

  • Andrade SA, Gratão PL, Schiavinato MA et al (2009) Zn uptake, physiological response and stress attenuation in mycorrhizal jack bean growing in soil with increasing Zn concentration. Chemosphere 75:1363–1370

    Article  CAS  Google Scholar 

  • Baccouch S, Chaoui A, Ferjani EE et al (1998) Nickel-induced oxidative damage and antioxidant responses in Zea mays shoots. Plant Physiol Biochem 36:689–694

    Article  CAS  Google Scholar 

  • Cambrollé J, MancillaLeytón JM, MuñozVallés S et al (2012) Zinc tolerance and accumulation in the salt-marsh shrub Halimione portulacoides. Chemosphere 86:867–874

    Article  Google Scholar 

  • Candan N, Tarhan L (2003) The correlation between antioxidant enzyme activities and lipid peroxidation levels in Mentha pulegium organs grown in Ca2+, Mg2+, Cu2+, Zn2+ and Mn2+ stress conditions. Plant Sci 165:769–776

    Article  CAS  Google Scholar 

  • Choudhary M, Jetley UK, Abash KM et al (2007) Effect of heavy metal stress on proline, malondialdehyde, and superoxide dismutase activity in the cyanobacterium Spirulina platensis-S5. Ecotoxicol Environ Saf 66:204–209

    Article  CAS  Google Scholar 

  • Dazy M, Masfaraud JF, Férard JF (2009) Induction of oxidative stress biomarkers associated with heavy metal stress in Fontinalis antipyretica Hedw. Chemosphere 75:297–302

    Article  CAS  Google Scholar 

  • Dinh NT, Vu DT, Mulligan D, Nguyen AV (2015) Accumulation and distribution of zinc in the leaves and roots of the hyperaccumulator Noccaea caerulescens. Environ Exp Bot 110:85–95

    Article  CAS  Google Scholar 

  • Environmental Protection Report to the 11th National People’s Congress of China (2011): Environmental Protection Report to the 11th National People’s Congress of China

  • Fridovich I (1986) Biological effects of the superoxide radical. Arch Biochem Biophys 247:1–11

    Article  CAS  Google Scholar 

  • Gajewska E, Skłodowska M (2005) Antioxidative responses and proline level in leaves and roots of pea plants subjected to nickel stress. Acta Physiol Plant 27:329–340

    Article  CAS  Google Scholar 

  • Garbisu C, Alkorta I (2001) Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresour Technol 77:229–236

    Article  CAS  Google Scholar 

  • Giannopolits CN, Ries SK (1977) Superoxide dismutases I. Occurrence in higher plants. Plant Physiol 59:309–314

    Article  Google Scholar 

  • Hu P-J, Qiu R-L, Senthilkumar P et al (2009) Tolerance, accumulation and distribution of zinc and cadmium in hyperaccumulator Potentilla griffithii. Environ Exp Bot 66:317–325

    Article  CAS  Google Scholar 

  • Islam E, Liu D, Li T-Q et al (2008) Effect of Pb toxicity on leaf growth, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. J Hazard Mater 154:914–926

    Article  CAS  Google Scholar 

  • Islam F, Yasmeen T, Riaz M et al (2014) Proteus mirabilis alleviates zinc toxicity by preventing oxidative stress in maize (Zea mays) plants. Ecotoxicol Environ Saf 110:143–152

    Article  CAS  Google Scholar 

  • Israr M, Jewell A, Kumar D, Sahi SV (2011) Interactive effects of lead, copper, nickel and zinc on growth, metal uptake and antioxidative metabolism of Sesbania drummondii. J Hazard Mater 186:1520–1526

    Article  CAS  Google Scholar 

  • Jain R, Srivastava S, Solomon S et al (2010) Impact of excess zinc on growth parameters, cell division, nutrient accumulation, photosynthetic pigments and oxidative stress of sugarcane (Saccharum spp.). Acta Physiol Plant 32:979–986

    Article  CAS  Google Scholar 

  • Jiang H-M, Yang J-C, Zhang J-F (2007) Effects of external phosphorus on the cell ultrastructure and the chlorophyll content of maize under cadmium and zinc stress. Environ Pollut 147:750–756

    Article  CAS  Google Scholar 

  • Jiang J, Zhuang J-Y, Fan Y-Y, Shen B (2009) Map** of qtls for leaf malondialdehyde content associated with stress tolerance in rice. Rice Sci 16:72–74

    Article  Google Scholar 

  • Lasat MM, Pence NS, Garvin DF et al (2000) Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulescens. J Exp Bot 51:71–79

    Article  CAS  Google Scholar 

  • Li M, Hu C-W, Zhu Q et al (2006) Copper and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in the microalga pavlova viridis (prymnesiophyceae). Chemosphere 62:565–572

    Article  CAS  Google Scholar 

  • Li J, Huang Z, Hu Y, Yang H (2013) Potential risk assessment of heavy metals by consuming shellfish collected from **amen, China. Environ Sci Pollut Res 20:2937–2947

    Article  CAS  Google Scholar 

  • Liu D, Chen J-R, Mahmood Q et al (2014) Effect of Zn toxicity on root morphology, ultrastructure, and the ability to accumulate Zn in Moso bamboo (Phyllostachys pubescens). Environ Sci Pollut Res 21:13615–13624

    Article  CAS  Google Scholar 

  • Manios T, Stentiford EI, Millner PA (2003) The effect of heavy metals accumulation on the chlorophyll concentration of Typha latifolia plants, growing in a substrate containing sewage sludge compost and watered with metaliferus water. Ecol Eng 20:65–74

    Article  Google Scholar 

  • Meng Q-M, Zou J, Zou J-H et al (2007) Effect of Cu2+ concentration on growth, antioxidant enzyme activity and malondialdehyde content in garlic (Allium sativum L.). Acta Biol Cracov Bot 49:95–101

    Google Scholar 

  • Nyitrai P, Bóka K, Gáspár L et al (2003) Characterization of the stimulating effect of low-dose stressors in maize and bean seedlings. J Plant Physiol 160:1175–1183

    Article  CAS  Google Scholar 

  • Ozdener Y, Aydin BK (2010) The effect of zinc on the growth and physiological and biochemical parameters in seedlings of Eruca sativa (L.) (Rocket). Acta Physiol Plant 32:469–476

    Article  CAS  Google Scholar 

  • Pence NS, Larsen PB, Ebbs SD et al (2000) The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proc Natl Acad Sci U S A 97:4956–4960

    Article  CAS  Google Scholar 

  • Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Res Gate 975:384–394

    CAS  Google Scholar 

  • Robinson BH, Ieblanc M, Petit D et al (1998) The potential of Thlaspi caerulescens for phytoremediation of contaminated soils. Plant Soil 203:47–56

    Article  CAS  Google Scholar 

  • Rossi G, Figliolia A, Socciarelli S et al (2002) Capability of brassica napus to accumulate cadmium, zinc and copper from soil. Acta Biotechnol 22:133–140

    Article  CAS  Google Scholar 

  • Saison C, PerrinGanier C, Amellal S et al (2004) Effect of metals on the adsorption and extractability of 14C-phenanthrene in soils. Chemosphere 55:477–485

    Article  CAS  Google Scholar 

  • Saradhi PP (1991) Proline accumulation under heavy metal stress. J Plant Physiol 138:554–558

    Article  Google Scholar 

  • Scalet M, Federico R, Guido MC et al (1995) Peroxidase activity and polyamine changes in response to ozone and simulated acid rain in Aleppo pine needles. Environ Exp Bot 35:417–425

    Article  CAS  Google Scholar 

  • Schat H, Sharma SS, Vooijs R (1997) Heavy metal-induced accumulation of free proline in a metal-tolerant and a nontolerant ecotype of Silene vulgaris. Physiol Plant 101:477–482

    Article  CAS  Google Scholar 

  • Schneider T, Persson DP, Husted S et al (2013) A proteomics approach to investigate the process of Zn hyperaccumulation in Noccaea caerulescens (J & C. Presl) F.K. Meyer. Plant J 73:131–142

    Article  CAS  Google Scholar 

  • Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50

    Article  CAS  Google Scholar 

  • Song X-Z, Peng C-H, Zhou G-M et al (2013) Climate warming-induced upward shift of Moso bamboo population on Tianmu Mountain, China. J Mt Sci 10:363–369

    Article  Google Scholar 

  • Sun Y-B, Zhou Q-X, Wei S-H et al (2007) Growth responses of the newly-discovered Cd-hyperaccumulator Rorippa globosa and its accumulation characteristics of Cd and as under joint stress of Cd and As. Front Environ Sci Eng China 1:107–113

    Article  Google Scholar 

  • Tang Y-T, Qiu R-L, Zeng X-W et al (2009) Lead, zinc, cadmium hyperaccumulation and growth stimulation in Arabis paniculata Franch. Environ Exp Bot 66:126–134

    Article  CAS  Google Scholar 

  • Teng Y-G, Wu J, Lu S-J et al (2014) Soil and soil environmental quality monitoring in China: a review. Environ Int 69:177–199

    Article  CAS  Google Scholar 

  • Upadhyay R, Panda SK (2010) Zinc reduces copper toxicity induced oxidative stress by promoting antioxidant defense in freshly grown aquatic duckweed Spirodela polyrhiza L. J Hazard Mater 175:1081–1084

    Article  CAS  Google Scholar 

  • Van AF, Clijsters H (1990) A biological test system for the evaluation of the phytotoxicity of metal-contaminated soils. Environ Pollut 66:157–172

    Article  Google Scholar 

  • Verma S, Dubey RS (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164:645–655

    Article  CAS  Google Scholar 

  • Wenzel WW, Jockwer F (1999) Accumulation of heavy metals in plants grown on mineralized soils of the Austrian Alps. Environ Pollut 104:145–155

    Article  CAS  Google Scholar 

  • Xu Q-S, Qiu H, Chu W-Y et al (2013) Copper ultrastructural localization, subcellular distribution, and phytotoxicity in Hydrilla verticillata (L.f.) Royle. Environ Sci Pollut Res 20:8672–8679

    Article  CAS  Google Scholar 

  • Yang X-E, Long X-X, Ni W-Z et al (2002) Sedum alfredii H: a new Zn hyperaccumulating plant first found in China. Chin Sci Bull 47:1634–1637

    Article  CAS  Google Scholar 

  • Yang B, Shu W-S, Ye Z-H et al (2003) Growth and metal accumulation in vetiver and two Sesbania species on lead/zinc mine tailings. Chemosphere 52:1593–1600

    Article  CAS  Google Scholar 

  • Zhang L, Ye Z-Q, Li T-Q, Yang X-E (2006) Studies on soil microbial activity in areas contaminated by tailings from Pb/Zn mine. J Soil Water Conserv 20:136–140

    Google Scholar 

  • Zhang F-Q, Wang Y-S, Lou Z-P et al (2007) Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Chemosphere 67:44–50

    Article  CAS  Google Scholar 

  • Zhong B-Q, Liang T, Wang L-Q et al (2014) Applications of stochastic models and geostatistical analyses to study sources and spatial patterns of soil heavy metals in a metalliferous industrial district of China. Sci Total Environ 490:422–434

    Article  CAS  Google Scholar 

  • Zhuang P, McBride MB, **a H-P et al (2009) Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Sci Total Environ 407:1551–1561

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was financially supported through a grant from the Natural Science Foundation of China (31300520), Science and Technology Program of Zhejiang Province (2014C33043), Science Technology department of Zhejiang province (2013C33016), and the Zhejiang Provincial Natural Science Foundation of China (LY12C16004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Liu.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, D., Shafi, M., Wang, Y. et al. Effect of Zn stresses on physiology, growth, Zn accumulation, and chlorophyll of Phyllostachys pubescen s . Environ Sci Pollut Res 22, 14983–14992 (2015). https://doi.org/10.1007/s11356-015-4692-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4692-3

Keywords

Navigation