Log in

In Situ Fabrication of Low-Friction Sandwich Sheets Through Functionalized Graphene Crosslinked by Ionic Liquids

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Graphene is considered a wonder material for fundamental research and industrial application, whereas its poor dispersibility and incompatibility in lubricants have impeded the application for solving lubrication problems. Here, in situ fabrication of effectively functionalized graphene sheets was developed through a moderate electrochemical method for exfoliating graphite into graphene sheets in ionic liquids solution. The as-fabricated graphene sheets with the charged groups of ionic liquids (ILs) could be self-assembled together to form the multilayer sandwich structure through the electrostatic interaction. Self-assembly multilayer graphene (MLG) exhibits so high-density coverage of functional groups that some amorphous regions are formed on the graphene basal plane, which significantly improves its dispersibility and stability in ILs lubricant. Moreover, the functionalized MLG as a novel lubricant additive greatly enhances the friction-reducing and antiwear abilities for the contact of steel/steel (friction coefficient and wear volume lubricated by ILs with MLG at applied load of 200 N and 150 °C were reduced by up to 55.9 and 84.2 %, and under high vacuum were reduced by up to 36 and 94.3 % with pure ILs as a comparison, respectively), which is attributed to the synergies of ILs and MLG because ILs with functionalized MLG can form the physical adsorptive film and tribo-chemical reaction film on the rubbing surface during friction process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A.: Two-dimensional gas of massless dirac fermions in graphene. Nature 438, 197–200 (2005)

    Article  Google Scholar 

  2. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Article  Google Scholar 

  3. Geim, A.K.: Graphene: status and prospects. Science 324, 1530–1534 (2009)

    Article  Google Scholar 

  4. Pu, J., Mo, Y., Wan, S., Wang, L.: Fabrication of novel graphene–fullerene hybrid lubricating films based on self-assembly for MEMS applications. Chem. Commun. 50, 469–471 (2014)

    Article  Google Scholar 

  5. Stankovich, S., Dikin, D.A., Dommettm, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T., Ruoff, R.S.: Graphene-based composite materials. Nature 442, 282–286 (2006)

    Article  Google Scholar 

  6. Kim, T.Y., Lee, H.W., Stoller, M., Dreyer, D.R., Bielawski, C.W., Ruoff, R.S., Suh, K.S.: High-performance supercapacitors based on poly(ionic liquid)-modified graphene electrodes. ASC Nano 5, 436–442 (2011)

    Article  Google Scholar 

  7. Shan, C., Yang, H., Song, J., Han, D., Ivaska, A., Niu, L.: Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal. Chem. 81, 2378–2382 (2009)

    Article  Google Scholar 

  8. Liang, M., Zhi, L.: Graphene-based electrode materials for rechargeable lithium batteries. J. Mater. Chem. 19, 5871–5878 (2009)

    Article  Google Scholar 

  9. Zhang, L., Yu, J., Yang, M., **e, Q., Peng, H., Liu, Z.: Janus graphene from asymmetric two-dimensional chemistry. Nat. Commun. 4, 1443 (2013)

    Article  Google Scholar 

  10. Boukhvalov, D.W., Katsnelson, M.I.: Chemical functionalization of graphene with defects. Nano Lett. 8, 4373–4379 (2008)

    Article  Google Scholar 

  11. Park, J., Yan, M.D.: Covalent functionalization of graphene with reactive intermediates. Acc. Chem. Res. 46, 181–189 (2012)

    Article  Google Scholar 

  12. Chen, Y., Zhang, X., Zhang, D., Yu, P., Ma, Y.: High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes. Carbon 49, 573–580 (2011)

    Article  Google Scholar 

  13. Park, S., Lee, K.S., Bozoklu, G., Cai, W., Nguyen, S.T., Ruoff, R.S.: Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking. ACS Nano 2, 572–578 (2008)

    Article  Google Scholar 

  14. Lin, J., Wang, L., Chen, G.: Modification of graphene platelets and their tribological properties as a lubricant additive. Tribol. Lett. 41, 209–215 (2011)

    Article  Google Scholar 

  15. Quintana, M., Vazquez, E., Prato, M.: Organic functionalization of graphene in dispersions. Acc. Chem. Res. 46, 138–148 (2012)

    Article  Google Scholar 

  16. Park, S., An, J., Piner, R.D., Jung, I., Yang, D., Velamakanni, A., Nguyen, S.T., Ruoff, R.S.: Aqueous suspension and characterization of chemically modified graphene sheets. Chem. Mater. 20, 6592–6594 (2008)

    Article  Google Scholar 

  17. Ryu, S., Han, M.Y., Maultzsch, J., Heinz, T.F., Kim, P., Steigerwald, M.L., Brus, L.E.: Reversible basal plane hydrogenation of graphene. Nano Lett. 8, 4597–4602 (2008)

    Article  Google Scholar 

  18. Hernandez, Y., Nicolsi, V., Loyta, M., Blighe, F.M., Sun, Z., De, S., McGovern, I.T., Holland, B., Byrne, M., Gun’Ko, Y.K., Boland, J.J., Niraj, P., Duesberg, G., Krishnamurty, S., Goodhue, R., Hutchinson, J., Scardaci, V., Ferrari, A.C., Coleman, J.N.: High–yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3, 563–568 (2008)

    Article  Google Scholar 

  19. Emtsev, K.V., Bostwick, A., Horn, K., Jobst, J., Kellogg, G.L., Ley, L., McChesney, J.L., Ohta, T., Reshanov, S.A., Röhrl, J., Rotenberg, E., Schmid, A.K., Waldmann, D., Weber, H.B., Seyller, T.: Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater. 8, 203–207 (2009)

    Article  Google Scholar 

  20. Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Dresselhaus, M.S., Kong, J.: Large area, few-layer graphene films by chemical vapor deposition. Nano Lett. 9, 30–35 (2009)

    Article  Google Scholar 

  21. Hagiwara, R., Ito, Y.: Room temperature ILs of alkylimidazolium cations and fluoroanions. J. Fluor. Chem. 105, 221–227 (2000)

    Article  Google Scholar 

  22. Freire, M.G., Carvalho, P.J., Fernandes, A.M., Marrucho, I.M., Queimada, A.J., Coutinho, J.A.P.: Surface tension of imidazolium based ILs: anion, cation, temperature and water effect. J. Colloid Interface Sci. 314, 621–630 (2007)

    Article  Google Scholar 

  23. Wang, J., Wang, H., Zhang, S., Zhang, H., Zhao, Y.: Conductivities, volumes, fluorescence, and aggregation behavior of ILs [C4mim][BF4] and [Cnmim]Br (n = 4, 6, 8, 10, 12) in aqueous solutions. J. Phys. Chem. B 111, 6181–6188 (2007)

    Article  Google Scholar 

  24. Ye, C., Liu, W., Chen, Y., Yu, L.: Room-temperature ILs: a novel versatile lubricant. Chem. Commun. 21, 2244–2245 (2001)

    Article  Google Scholar 

  25. Lu, W., Fadeev, A.G., Qi, B., Smela, E., Mattes, B.R., Ding, J., Spinks, G.M., Mazurkiewicz, J., Zhou, D., Wallace, G.G., Macfarlane, D.R., Forsyth, S.A., Forsyth, M.: Use of ionic liquids for π-conjugated polymer electrochemical devices. Science 297, 983–987 (2002)

    Article  Google Scholar 

  26. Cai, M., Liang, Y., Yao, M., **a, Y., Zhou, F., Liu, W.: Imidazolium ILs as antiwear and antioxidant additive in poly(ethylene glycol) for steel/steel contacts. ACS Appl. Mater. Interfaces 2, 870–876 (2010)

    Article  Google Scholar 

  27. Liu, N., Luo, F., Wu, H., Liu, Y., Zhang, C., Chen, J.: One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv. Funct. Mater. 18, 1518–1525 (2008)

    Article  Google Scholar 

  28. Kim, K.S., Shin, B.K., Lee, H., Ziegler, F.: Refractive index and heat capacity of 1-butyl-3-methylimidazolium bromide and 1-butyl-3-methylimidazolium tetrafluoroborate, and vapor pressure of binary systems for 1-butyl-3-methylimidazolium bromide + trifluoroethanol and 1-butyl-3-methylimidazolium tetrafluoroborate + trifluoroethanol. Fluid Phase Equilib. 218, 215–220 (2004)

    Article  Google Scholar 

  29. Yuan, G., Li, X., Dong, Z., Westwood, A., Cui, Z., Cong, Y., Du, H., Kang, F.: Graphite blocks with preferred orientation and high thermal conductivity. Carbon 50, 175–182 (2012)

    Article  Google Scholar 

  30. Park, J.S., Reina, A., Saito, R., Kong, J., Dresselhaus, G., Dresselhaus, M.S.: G’ band Raman spectra of single, double and triple layer graphene. Carbon 47, 1303–1310 (2009)

    Article  Google Scholar 

  31. Ni, Z., Wang, Y., Yu, T., Shen, Z.: Ramam spectroscopy and imaging of graphene. Nano Res. 1, 273–291 (2008)

    Article  Google Scholar 

  32. Fan, X., Wang, L.: Highly conductive ionic liquids towards high-performance space lubricating greases. ACS Appl. Mater. Interface. 6, 14660–14671 (2014)

    Article  Google Scholar 

  33. Heimer, N.E., Del, S.R.E., Meng, Z.Z., Wilkes, J.S., Carper, W.R.: Vibrational spectra of imidazolium tetrafluoroborate ionic liquids. J. Mol. Liq. 124, 84–95 (2006)

    Article  Google Scholar 

  34. Englert, J.M., Dotzer, C., Yang, G., Schmid, M., Papp, C., Gottfried, J.M., Steinrück, H.P., Spiecker, E., Hauke, F., Hirsch, A.: Covalent bulk functionalization of graphene. Nat. Chem. 3, 279–286 (2011)

    Article  Google Scholar 

  35. Liu, X., Pu, J., Wang, L., Xue, Q.: Novel DLC/ionic liquid/graphene nanocomposite coatings towards high-vacuum related space applications. J. Mater. Chem. A 1, 3797–3809 (2013)

    Article  Google Scholar 

  36. NIST X-ray Photoelectron Spectroscopy Database, version 4.1; National Institute of Standards and Technology, Gaithersburg, MD (2012). http://srdata.nist.gov/xps/. Accessed on 26 Mar 2013

  37. **e, H., Saito, T., Hickner, M.A.: Zeta potential of ion-conductive membranes by streaming current measurements. Langmuir 27, 4721–4727 (2011)

    Article  Google Scholar 

  38. Thielbeer, F., Donaldson, K., Bradley, M.: Zeta potential mediated reaction monitoring on nano and microparticles. Bioconj. Chem. 22, 144–150 (2011)

    Article  Google Scholar 

  39. Wu, Y.Y., Tsui, W.C., Liu, T.C.: Experimental analysis of tribological properties of lubricating oils with nanoparticle additives. Wear 262, 819–825 (2007)

    Article  Google Scholar 

  40. Seki, T., Grunwaldt, J.D., Baiker, A.: In situ attenuated total reflection infrared spectroscopy of imidazolium-based room-temperature ionic liquids under “supercritical” CO2. J. Phys. Chem. B 113, 114–122 (2009)

    Article  Google Scholar 

  41. Berman, D., Erdemir, A., Sumant, A.V.: Reduced wear and friction enabled by graphene layers on sliding steel surfaces in dry nitrogen. Carbon 59, 167–175 (2013)

    Article  Google Scholar 

  42. Lin, J., Wang, L., Chen, G.: Modification of graphene platelets and their tribological properties as a lubricant additive. Tribol. Lett. 41, 209–215 (2011)

    Article  Google Scholar 

  43. Fan, X., **a, Y., Wang, L., Li, W.: Multi-layer graphene as a lubricating additive in bentone grease. Tribol. Lett. 55, 455–464 (2014)

    Article  Google Scholar 

  44. Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K.S., Roth, S., Geim, A.K.: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006)

    Article  Google Scholar 

  45. Phillips, B.S., John, G., Zabinski, J.S.: Surface chemistry of fluorine containing ionic liquids on steel substrates at elevated temperature using mössbauer spectroscopy. Tribol. Lett. 26, 85–91 (2007)

    Article  Google Scholar 

  46. Mu, Z., Zhou, F., Zhang, S., Liang, Y., Liu, W.: Effect of the functional groups in ionic liquid molecules on the friction and wear behavior of aluminum alloy in lubricated aluminum-on-steel contact. Tribol. Int. 38, 725–731 (2005)

    Article  Google Scholar 

  47. Ji, Q., Honma, I., Paek, S.M., Akada, M., Hill, J.P., Vinu, A., Ariga, K.: Layer-by-layer films of graphene and ionic liquids for highly selective gas sensing. Angew. Chem. 122, 9931–9933 (2010)

    Article  Google Scholar 

  48. Shen, J., Hu, Y., Li, C., Qin, C., Shi, M., Ye, M.: Layer-by-layer self-assembly of graphene nanoplatelets. Langmuir 25, 6122–6128 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grants 11172300 and 21373249).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li** Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, X., Wang, L. & Li, W. In Situ Fabrication of Low-Friction Sandwich Sheets Through Functionalized Graphene Crosslinked by Ionic Liquids. Tribol Lett 58, 12 (2015). https://doi.org/10.1007/s11249-015-0485-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-015-0485-6

Keywords

Navigation