Log in

Modification of Graphene Platelets and their Tribological Properties as a Lubricant Additive

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Graphene platelets were chemically modified in a reflux reaction with stearic and oleic acids. Examination of the surface features of the graphene platelets before and after modification by infrared spectroscopy and ultraviolet–visible spectrophotometer revealed that the modification led to an improvement in the dispersion of graphene platelets in base oil. The tribological behavior of the lubricating oil containing modified graphene platelets (MGP) was further investigated using a four-ball machine. The results indicated that the oil containing only 0.075 wt% of MGP clearly improved the wear resistance and load-carrying capacity of the machine. Scanning electron microscopy and energy dispersive spectrometer performed to analyze the wear scar surfaces after friction confirmed that the outstanding lubrication performance of MGP could be attributed to their small size and extremely thin laminated structure, which allow the MGP to easily enter the contact area, thereby preventing the rough surfaces from coming into direct contact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  CAS  Google Scholar 

  2. Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kevin, M., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T., Ruoff, R.S.: Graphene-based composite materials. Nature 442, 282–286 (2006)

    Article  CAS  Google Scholar 

  3. Wintterlin, J., Bocquet, M.L.: Graphene on metal surfaces. Surf. Sci. 603, 1841–1852 (2009)

    Article  CAS  Google Scholar 

  4. Ramanathan, T., Abdala, A.A., Stankovich, S., Dikin, D.A., Herrera-Alonso, M., Piner, R.D., Adamson, D.H., Schniepp, H.C., Chen, X., Ruoff, R.S.: Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 3, 327–331 (2008)

    Article  CAS  Google Scholar 

  5. Park, S.J., Ruoff, R.S.: Chemical methods for the production of graphenes. Nat. Nanotechnol. 4, 217–224 (2009)

    Article  CAS  Google Scholar 

  6. Zhang, Y.B., Tan, Y.W., Stormer, H.L., Kim, P.: Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005)

    Article  CAS  Google Scholar 

  7. Zhang, Y.B., Small, J.P., Amori, M.E.S., Kim, P.: Electric field modulation of galvanomagnetic properties of mesoscopic graphite. Phys. Rev. Lett. 94, 176803 (2005)

    Article  Google Scholar 

  8. Berger, C., Song, Z.M., Li, T.B., Li, X.B., Ogbazghi, A.Y., Feng, R., Dai, Z.T., Marchenkov, A.N., Conrad, E.H., First, P.N., de Heer, W.A.: Ultrathin epitaxial graphite: two-dimensional electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108, 19912–19916 (2004)

    Article  CAS  Google Scholar 

  9. Gilje, S., Han, S., Wang, M., Wang, K.L., Kaner, R.B.: A chemical route to graphene for device applications. Nano Lett. 7, 3394–3398 (2007)

    Article  CAS  Google Scholar 

  10. Ouyang, Y.J., Yoon, Y.K., Fodor, J.K., Guo, J.: Comparison of performance limits for carbon nanoribbon and carbon nanotube transistors. Appl. Phys. Lett. 89, 203107 (2006)

    Article  Google Scholar 

  11. Bunch, J.S., van der Zande, A.M., Verbridge, S.S., et al.: Electromechanical resonators from graphene sheets. Science 315, 490–493 (2007)

    Article  CAS  Google Scholar 

  12. Liu, Q., Liu, Z.F., Zhang, X.Y., Zhang, N., Yang, L.Y., Yin, S.G., Chen, Y.S.: Organic photovoltaic cells based on an acceptor of soluble graphene. Appl. Phys. Lett. 92, 223303 (2008)

    Article  Google Scholar 

  13. Stoller, M.D., Park, S.J., Zhu, Y.W., An, J.H., Ruof, R.S.: Graphene-based ultracapacitors. Nano Lett. 8, 3498–3502 (2008)

    Article  CAS  Google Scholar 

  14. Dikin, D.A., Stankovich, S., Zimney, E.J.: Preparation and characterization of graphene oxide paper. Nature 448, 457–460 (2007)

    Article  CAS  Google Scholar 

  15. Park, S.J., Lee, K.S., Bozoklu, G., Cai, W.W., Nguyen, S.B.T., RuoffPark, R.S.: 2008 Graphene oxide papers modified by divalent ions—enhancing mechanical properties via chemical cross-linking. ACS Nano 2, 572–578 (2008)

    Article  CAS  Google Scholar 

  16. Blake, P., Brimicombe, P.D., Nair, R.R.: Graphene-based liquid crystal device. Nano Lett. 8, 1704–1708 (2008)

    Article  Google Scholar 

  17. Peterson, M.B., Murray, S.F., Florek, J.J.: Consideration of lubricants for temperatures above 1000 F. Tribol. Trans. 2, 225–234 (1959)

    Article  Google Scholar 

  18. Bryant, P.J., Gutshall, P.L., Taylor, L.H.: A study of mechanisms of graphite friction and wear. Wear 7, 118–126 (1964)

    Article  Google Scholar 

  19. Fusaro, R.L.: Mechanisms of graphite fluoride [(CFx)n] lubrication. Wear 53, 303–323 (1979)

    Article  CAS  Google Scholar 

  20. Tian, J., Xue, Q.J.: The deintercalation effect of FeCl3-graphite intercalation compound in paraffin liquid lubrication. Tribol. Int. 30, 571–574 (1997)

    Article  CAS  Google Scholar 

  21. Hilton, M.R., Bauer, R., Didziulis, S.V., Dugger, M.T., Keem, J.M., Scholhamer, J.: Structural and tribological studies of MoS2 solid lubricant films having tailored metal-multilayer nanostructures. Surf. Coat. Technol. 53, 13–23 (1992)

    Article  CAS  Google Scholar 

  22. Pottuz, L.J., Dassenoya, F., Belina, M., Vache, B., Martina, J.M., Fleischer, N.: Ultralow-friction and wear properties of IF-WS2 under boundary lubrication. Tribol. Lett. 18, 477–485 (2005)

    Article  Google Scholar 

  23. Hua, J.J., Job, S.H., Renb, Z.F., Voevodina, A.A., Zabinski, J.S.: Tribological behavior and graphitization of carbon nanotubes grown on 440C stainless steel. Tribol. Lett. 19, 119–125 (2005)

    Article  Google Scholar 

  24. Huang, H.D., Tu, J.P., Gan, L.P., Li, C.Z.: An investigation on tribological properties of graphite nanosheets as oil additive. Wear 261, 140–144 (2006)

    Article  CAS  Google Scholar 

  25. Filleter, T., McChesney, J.L., Bostwick, A., Rotenberg, E., Emtsev, K.V., Seyller, T., Horn, K., Bennewitz, R.: Friction and dissipation in epitaxial graphene films. Phys. Rev. Lett. 102, 1–4 (2009)

    Article  Google Scholar 

  26. Wang, D.Y., Chang, C.L., Chen, Z.Y., Ho, W.Y.: Microstructural and tribological characterization of MoS2–Ti composite solid lubricating films. Surf. Coat. Technol. 120–121, 629–635 (1999)

    Article  Google Scholar 

  27. Lu, K.: Theoretical analysis of colloidal interaction energy in nanoparticle suspensions. Ceram. Int. 34, 1353–1360 (2008)

    Article  CAS  Google Scholar 

  28. Min, Z.R., Ming, Q.Z., Shi, G., Ji, Q.L., Wetzel, B., Friedrich, K.: Graft polymerization onto inorganic nanoparticles and its effect on tribological performance improvement of polymer composites. Tribol. Int. 36, 697–707 (2003)

    Article  Google Scholar 

  29. Gojny, F.H., Nastalczyk, J., Roslaniec, Z., Schulte, K.: Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites. Chem. Phys. Lett. 370, 820–824 (2003)

    Article  CAS  Google Scholar 

  30. Peng, D.X., Kang, Y., Hwang, R.M., Shyr, S.S., Chang, Y.P.: Tribological properties of diamond and SiO2 nanoparticles added in paraffin. Tribol. Int. 42, 911–917 (2009)

    Article  CAS  Google Scholar 

  31. Chen, C.S., Chen, X.H., Xu, L.S., Yang, Z., Li, W.H.: Modification of multi-walled carbon nanotubes with fatty acid and their tribological properties as lubricant additive. Carbon 43, 1660–1666 (2005)

    Article  CAS  Google Scholar 

  32. Coates, J.P.: The interpretation of infrared spectra: published reference sources. Appl. Spectrosc. Rev. 31, 179–192 (1996)

    Article  CAS  Google Scholar 

  33. Bartz, W.J.: Solid lubricant additive-effect of concentration and other additives on antiwear performance. Wear 17, 421–432 (1971)

    Article  CAS  Google Scholar 

  34. Holinski, R.: Lubrication mechanism of solid lubricants in oils. Tribol. Trans. 18, 263–269 (1975)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by National Science Foundation of China (No. 20574025), Natural Science Foundation of Fujian Province (E0820001), and Fujian Key Laboratory of Polymer Materials (Fujian Normal University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohua Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, J., Wang, L. & Chen, G. Modification of Graphene Platelets and their Tribological Properties as a Lubricant Additive. Tribol Lett 41, 209–215 (2011). https://doi.org/10.1007/s11249-010-9702-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-010-9702-5

Keywords

Navigation