Log in

Coupling Effects of Flow Velocity and Ionic Strength on the Clogging of a Saturated Porous Medium

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

In this study, both the effects of suspension ionic strength and flow velocity on deposition and the clogging phenomena are investigated. Experimental tests are performed in the case of the silt microparticle transport through a saturated sand column with the presence of repulsive interactions. The specific size of these particles is chosen to ensure the presence of both physicochemical and mechanical retention mechanisms. The injection of particle suspension is conducted for long durations at different ionic strength and flow velocities. The deposition rate and the porous media clogging mainly depend on the ionic strength. An increase in the ionic strength causes an increase in the deposition rate and a reduction of the hydraulic conductivity which leads to the progress of the clogging phenomenon through the porous medium. Experimental analyses show the presence of a clogging front whose spatial distribution and temporal progress depend on the suspension ionic strength. Its velocity advancement is proportional to the ionic strength. Within the validity range of Darcy’s law, the dynamics of deposition and clogging also depend on the flow rate. In particular, the retention of silt microparticles is more important for low flow velocities. The influence of the physicochemical effects on the deposition rate and therefore sand texture clogging is more significant at low flow rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahfir, N.D., Wang, H.Q., Benamar, A., Alem, A., Massei, N., Dupont, J.P.: Transport and deposition of suspended particles in saturated porous media: hydrodynamic effect. Hydrogeol. J. 15(4), 659–668 (2007)

    Article  Google Scholar 

  • Ahfir, N.D., Benamar, A., Alem, A.,Wang, H.Q.: Transport et cinétique de dépôt des particules en suspension dans un milieu poreux granulaire: étude des mécanismes de rétention des particules. \(18^{\grave{\rm e}{\rm me}}\) Congrés Français de mécanique le 27-31 août 2007, Grenoble (2007)

  • Alem, A., Elkawafi, A., Ahfir, N., Wang, H.: Filtration of kaolinite particles in a saturated porous medium: hydrodynamic effects. Hydrogeol. J. 21, 573–586 (2013)

    Article  Google Scholar 

  • Bergna, H.E., William, O.R.: Colloidal Silica. Fundamentals and Applications (Surfactant Science Series), vol. 131. CRC Press Taylor & Francis Group, Boca Raton (2006)

  • Blume, T., Weisbrodc, N., Selker, J.S.: On the critical salt concentrations for particle detachment in homogeneous sand and heterogeneous Hanford sediments. Geoderma 124(1–2), 121–132 (2005)

    Article  Google Scholar 

  • Bradford, S.A., Torkzaban, S., Walker, S.L.: Coupling of physical and chemical mechanisms of colloid straining in saturated porous media. Water Res. 41(13), 3012–3024 (2007)

    Article  Google Scholar 

  • Bradford, S., Bettahar, M., Simunek, J., Van Genuchten, M.T.: Straining and attachment of colloids in physically heterogeneous porous media. Vadose Zone J. 3, 384–394 (2004)

    Article  Google Scholar 

  • Brown, D.G., Stencel, J.R., Jaffé, P.R.: Effect of porous media preparation on bacteria transport through laboratory columns. Water Res 36, 105–114 (2002)

    Article  Google Scholar 

  • Cerda, C.M.: Mobilization of kaolinite fines in porous media. Colloids Surface 27(1–3), 219–241 (1987)

    Article  Google Scholar 

  • Chauveteau, G., Nabzar, L., Coste, J.-P. (1998) Physics and modeling of permeability damage induced by particle deposition. In: SPE Formation Damage Control Conference, 18–19 February 1998. Lafayette, Louisiana: Society of Petroleum Engineers

  • Compére, F., Porel, G., Delay, F.: Transport and retention of clay particles in saturated porous media. Influence of ionic strength and pore velocity. J. Contam. Hydrol. 49(1–2), 1–21 (2001)

    Article  Google Scholar 

  • Corapcioglu, M.Y., Jiang, S.: Colloid facilitated groundwater contaminant transport. Water Resour. Res. 29(7), 2215–2226 (1993)

    Article  Google Scholar 

  • Derjaguin, B., Landau, L.: Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Phys. Chim. URSS 14, 633–662 (1941)

  • Du, Y., Shen, C., Zhang, H., Huang, Y., Huang, Y.: Effects of flow velocity and nonionic surfactant on colloid straining in saturated porous media under unfavorable conditions. Transp. Porous Med. 98, 193–208 (2013)

    Article  Google Scholar 

  • Elimelech, M., Gregory, J., Jia, X., Williams, R.A.: Particle deposition and aggregation: measurement, modeling, and simulation. Langmuir 26, 16690–16698 (1995)

    Google Scholar 

  • Elimelech, M., Nagai, M., Ko, C., Ryan, J.: Relative insignificance of mineral grain zeta potential to colloid transport in geochemically heterogeneous porous media. Environ. Sci. Technol. 34, 2143–2148 (2000)

    Article  Google Scholar 

  • Elkawafi, A.G., Wang, H.Q.: Clogging of a saturated porous medium subjected to a flow charged with particles. PhD Thesis, University of LeHavre, France (2010)

  • Fontes, D.E., MILLS, A.L., Hornberger, G.M., Herman, J.S.: Physical and chemical factors influencing transport of microorganisms through porous media. Appl. Environ. Microbiol. 57(9), 2473–2481 (1991)

    Google Scholar 

  • Foppen, J.W., van Herwerden, M., Schijven, J.: Measuring and modelling straining of escherichia coli in saturated porous media. J. Contam. Hydrol. 93(1–4), 236–254 (2007)

  • Gregory, J.: Approximate expressions for retarded van der Waals interaction. Colloid Interface Sci. 83, 138–145 (1981)

    Article  Google Scholar 

  • Grolimund, D., Borkovec, M.: Release of colloidal particles in natural porous media by monovalent and divalent cations. J. Contam. Hydrol. 87, 155–175 (2006)

    Article  Google Scholar 

  • Harmand, B., Rodier, E., Sardin, M., Dodds, J.: Transport and capture of submicron particles in a natural sand: short column experiments and a linear model. Colloids Surf. A Physicochem. Eng. Aspects 107, 233–244 (1996)

    Article  Google Scholar 

  • Herzig, P.J., Leclerc, D., Goff, P.L.: Flow of suspensions through porous media. Application to deep filtration. Indus. Eng. Chem. 62(5), 8–35 (1970). doi:10.1021/ie50725a003

    Article  Google Scholar 

  • Hogg, R., Healy, T., Fuersten, D.: Mutual coagulation of colloidal dispersions. Trans. Faraday Soc. 62(522), 1638–1651 (1966)

    Article  Google Scholar 

  • Jegatheesan, V., Vigneswaram, S.: Transient stage deposition of submicron particles in deep bed filtration under unfavourable conditions. Water Res. 34, 2119–2131 (2000)

    Article  Google Scholar 

  • Khilar, K.C., Fogler, H.S.: Migration of Fines in Porous Media. Kluwer Academic Publishers, London (1998)

    Book  Google Scholar 

  • Khilar, K.C., Fogler, H.S.: The existence of critical salt concentration for particle release. J. Colloid Interface Sci. 101(1), 214–224 (1984)

    Article  Google Scholar 

  • Kolawoski, J.E., Matijevic, E.: Particle adhesion and removal in model systems: part I. Monodispersed chromium hydroxide on glass. J. Chem. Soc. Faraday Trans. 75(1), 65–78 (1979)

    Article  Google Scholar 

  • Kretzchmar, R., Borkovec, M., Grolimund, D., Elimelech, M.: Mobile surface colloids and their role in contaminant transport. Adv. Agron. 66, 121–193 (1999)

    Article  Google Scholar 

  • Kretzschmar, R., Barmettle, K., Grolimund, D., Yan, Y.D., Borkovec, M., Sticher, H.: Experimental determination of colloid deposition rates and collision efficiencies in natural porous media. Water Resour. Res. 33(5), 1129–1137 (1997)

    Article  Google Scholar 

  • Lekha, K.: Field instrumentation and monitoring of soil erosion in coir geotextile stabilised slopes-a case study. Geotext. Geomembr. 22(5), 399–413 (2004)

  • Mcdowell-Boyer, L.M., Hunt, J.R., Itar, N.: Particle transport through porous media. Water Resour. Res. 22(13), 901–1921 (1986)

    Article  Google Scholar 

  • McGechan, M.B., Lewis, D.R.: Transport of particulate and colloid sorbed contaminants through soil, Part 1: general principles. Biosyst. Eng. 83(3), 255–273 (2002)

    Article  Google Scholar 

  • Mesticou, Z., Kacem, M., Dubujet, P.: Mise en évidence de la vitesse critique dans le transport des micro-particules dans le milieu poreux : Expérience et modélisation. Chambéry (2012)

  • Mesticou, Z., Kacem, M., Dubujet, P.: Influence of ionic strength and flow rate on silt particle deposition and release in saturated porous medium: experiment and modeling. Transp. Porous Media 103(1), 1–24 (2014)

    Article  Google Scholar 

  • Moghadasi, J., Muller-Steinhagen, H., Jamialahmadi, M., Sharif, A.: Theoretical and experimental study of particle movement and deposition in porous media during water injection. J. Pet. Sci. Eng. 43(3–4), 163–181 (2004)

  • Nowack, B., Bucheli, T.D.: Occurrence, behavior and effects of nanoparticles in the environment. Environ. Pollut. 150, 5–22 (2007)

    Article  Google Scholar 

  • Ochi, J., Vernoux, J.-F.: Permeability decrease in sandstone reservoirs by fluid injection hydrodynamic and chemical effects. J. Hydrol. 208(3–4), 237–248 (1998)

    Article  Google Scholar 

  • Redman, J., Walker, S., Elimelech, M.: Bacterial adhesion and transport in porous media: role of the secondary energy minimum. Environ. Sci. Technol. 38, 1777–1785 (2004)

    Article  Google Scholar 

  • Repentigny, C., Courcelles, B.: A simplified model to predict clogging of reactive barriers. Environ. Geotech. (2014). doi:10.1680/envgeo.14.00020

    Google Scholar 

  • Roy, S.B., Dzombak, D.A.: Colloid release and transport processes in natural and porous media. Colloids Surf. A: Physicochem. Eng. Asp. 107, 245–262 (1996)

  • Ryan, J.N., Elimelech, M.: Colloid mobilization and transport in groundwater. Colloids Surf. A: Physicochem. Eng. Asp. 107, 1–56 (1996)

  • Ryan, J.N., Gschwend, P.M.: Effect of solution chemistry on clay colloid release from an iron oxide coated aquifer sand. Environ. Sci. Technol. 28(9), 1717–1726 (1994)

    Article  Google Scholar 

  • Saiers, J., Hornberger, G., Liang, L.: First- and second-order kinetics approaches for modeling the transport of colloidal particles in porous media. Water Resour. Res. 30(9), 2499–2506 (1994a)

    Article  Google Scholar 

  • Saiers, J.E., Hornberger, G.M., Harvey, C.: Colloidal silica transport through structured, heterogeneous porous media. J. Hydrol. 163(3–4), 271–288 (1994b)

    Article  Google Scholar 

  • Seghir, A., Benamar, A., Wang, H.: Effects of fine particles on the suffusion of cohesionless soils. Experiments and modeling. Transp. Porous Media 103, 233–247 (2014)

    Article  Google Scholar 

  • Sharma, P., Bao, D., Fagerlund, F.: Deposition and mobilization of functionalized multiwall carbon nanotubes in saturated porous media: effect of grain size, flow velocity and solution chemistry. Environ. Earth Sci. (2014). doi:10.1007/s12665-014-3208-7

    Google Scholar 

  • Spielman, L.: Particle capture from low-speed laminar flows. Annu. Rev. Fluid Mech. 9, 297–319 (1977)

    Article  Google Scholar 

  • Spielman, L.A., Cukor, P.M.: Deposition of non-Brownian particles under colloidal forces. J. Colloid Interface Sci. 43(1), 51–65 (1973)

    Article  Google Scholar 

  • Tiraferri, A., Tosco, T., Sethi, A.: Transport and retention of micro particles in packed sand columns at low and intermediate ionic strengths experiments and mathematical modeling. Environ. Earth Sci. 63(4), 847–859 (2011)

    Article  Google Scholar 

  • Torkzaban, S., Bradford, S.A., Walker, S.L.: Resolving the coupled effects of hydrodynamics and DLVO forces on colloid attachment in porous media. Langmuir 23, 9652–9660 (2007)

    Article  Google Scholar 

  • Tufenkji, N., Redman, J.A., Elimelech, M.: Deposition patterns of microbial particles in laboratory scale column experiments. Environ. Sci. Technol. 37(3), 616–623 (2003)

    Article  Google Scholar 

  • Vardoulakis, I.: Fluidization in artesian flow conditions: hydromechanically unstable granular media. Geotechnique 54(3), 165–177 (2004)

    Article  Google Scholar 

  • Verwey, E.J.W., Overbeek, J.T.G.: Theory of the Stability of Lyophobic Colloids. Elsevier Publishing Company Inc, Amsterdam (1948)

    Google Scholar 

  • Wang, D., Zhang, W., Hao, X., Zhou, D.: Transport of biochar particles in saturated granular media: effects of pyrolysis temperature and particle size. Environ. Sci. Technol. 47(2), 821–828 (2013)

    Article  Google Scholar 

  • Wang, H.Q., Lacroix, M., Masséi, N., Dupont, J.P.: Particle transport in a porous medium: determination of hydrodispersive characteristics and deposition rates. Surf. Geosci. 331(2), 97–104 (2000)

    Google Scholar 

  • Wang, Y., Gao, B., Morales, V.L., Tian, Y., Wu, L., Gao, J., Bai, W., Yang, L.: Transport of titanium dioxide nanoparticles in saturated porous media under various solution chemistry conditions. Nanoparticle Res. 14(1095) (2012). doi:10.1007/s11051-012-1095-y

  • William, P.J., Li, X., Assemi, S.: Deposition and re-entrainment dynamics of microbes and non-biological colloids during non-perturbed transport in porous media in the presence of an energy barrier to deposition. Adv. Water Resour. 30(6–7), 1432–1454 (2007)

  • **e, X.-L., He, F., Xu, D., Wu, Z.-B.: Hydrodynamic aspects of particle clogging in the simulated vertical flow constructed wetland using river sands as substrate. Fresenius Environ. Bull. 19(11), 2567–2575 (2010)

    Google Scholar 

  • Zhou, D., Wang, D., Cang, L., Hao, X., Chu, L.: Transport and re-entrainment of soil colloids in saturated packed column: effects of pH and ionic strength. Soils Sediments 11, 491–503 (2011)

    Article  Google Scholar 

  • Zhou, J., Zheng, X., Flury, M., Lin, G.: Permeability changes during remediation of an aquifer affected by sea-water intrusion: A laboratory column study. J. Hydrol. 376, 557–566 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zyed Mesticou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mesticou, Z., Kacem, M. & Dubujet, P. Coupling Effects of Flow Velocity and Ionic Strength on the Clogging of a Saturated Porous Medium. Transp Porous Med 112, 265–282 (2016). https://doi.org/10.1007/s11242-016-0644-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-016-0644-8

Keywords

Navigation