Log in

Grand Activity Minima and Maxima via Dual Dynamos

  • Editor’s Choice
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Reconstructions of past solar activity based on cosmogenic radioisotopes have reavealed that the Sun spends a significant fraction (\({\approx}\, 20\)%) of its time in aperiodically recurring states of so-called Grand Minima or Grand Maxima, namely epochs of strongly supressed and markedly above-average levels of magnetic activity, respectively. The physical origin of these episodes is not yet understood. In this article we present a dual-dynamo model of the solar cycle, combining a dominant dynamo based on differential-rotation shear and surface decay of bipolar active regions, and a weak, deep-seated turbulent dynamo. The resulting dynamo simulations are found to exhibit the equivalent of observed Grand Minima and Maxima. By adjusting the magnitude and saturation level of the secondary turbulent dynamo, we can reproduce well the duration and waiting-time distributions of Grand Minima and Maxima inferred from the cosmogenic-isotope record. The exit from Grand Minima episodes is typically characterized by strong hemispheric asymmetries, in agreement with sunspot observations during the 1645 – 1715 Maunder Minimum. In these simulations, Grand Maxima can be unambiguously identified as a distinct dual-dynamo state resulting from constructive interference between the two dynamos mechanisms operating within the simulation. This interaction leads to the autonomous production of long quasi-periodicities in the millennial range, commensurate with the Halstatt cycle. Such a quasi-periodic modulation, readily produced through dynamical backreaction on large-scale flows in non-kinematic dynamo models, is quite uncommon in a purely kinematic solar-cycle model such as the one developed herein. We argue that these long periodicities are set by the long diffusion time of magnetic field accumulating in the stable layers underlying the turbulent convection zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Augustson, K., Brun, A.S., Miesch, M., Toomre, J.: 2015, Grand minima and equatorward propagation in a cycling stellar convective dynamo. Astrophys. J. 809, 149. DOI . ADS .

    Article  ADS  Google Scholar 

  • Baumann, I., Schmitt, D., Schüssler, M., Solanki, S.K.: 2004, Evolution of the large-scale magnetic field on the solar surface: a parameter study. Astron. Astrophys. 426, 1075. DOI . ADS .

    Article  ADS  Google Scholar 

  • Beer, J., Tobias, S., Weiss, N.: 1998, An active sun throughout the maunder minimum. Solar Phys. 181, 237. DOI . ADS .

    Article  ADS  Google Scholar 

  • Beer, J., Blinov, A., Bonani, G., Finkel, R.C., Hofmann, H.J., Lehmann, B., Oeschger, H., Sigg, A., Schwander, J., Staffelbach, T., Stauffer, B., Suter, M., Wötfli, W.: 1990, Use of Be-10 in polar ice to trace the 11-year cycle of solar activity. Nature 347, 164. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bushby, P.J.: 2006, Zonal flows and grand minima in a solar dynamo model. Mon. Not. Roy. Astron. Soc. 371, 772. DOI . ADS .

    Article  ADS  Google Scholar 

  • Caligari, P., Moreno-Insertis, F., Schüssler, M.: 1995, Emerging flux tubes in the solar convection zone. 1: asymmetry, tilt, and emergence latitude. Astrophys. J. 441, 886. DOI . ADS .

    Article  ADS  Google Scholar 

  • Calim Costa, M.: 2013, WAIPY, wavelet analysis in Python.

  • Cameron, R.H., Schüssler, M.: 2012, Are the strengths of solar cycles determined by converging flows towards the activity belts? Astron. Astrophys. 548, A57. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cameron, R.H., Schüssler, M.: 2017, Understanding solar cycle variability. Astrophys. J. 843, 111. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cameron, R.H., Jiang, J., Schmitt, D., Schüssler, M.: 2010, Surface flux transport modeling for solar cycles 15 – 21: effects of cycle-dependent tilt angles of sunspot groups. Astrophys. J. 719, 264. DOI . ADS .

    Article  ADS  Google Scholar 

  • Charbonneau, P.: 2010, Dynamo models of the solar cycle. Liv. Rev. Solar Phys. 7, 3. DOI . ADS .

    Article  ADS  Google Scholar 

  • Charbonneau, P.: 2014, Solar dynamo theory. Annu. Rev. Astron. Astrophys. 52, 251. DOI . ADS .

    Article  ADS  Google Scholar 

  • Charbonneau, P., Blais-Laurier, G., St-Jean, C.: 2004, Intermittency and phase persistence in a Babcock–Leighton model of the solar cycle. Astrophys. J. Lett. 616, L183. DOI . ADS .

    Article  ADS  Google Scholar 

  • Clauset, A., Shalizi, C.R., Newman, M.E.J.: 2009, Power-law distributions in empirical data. SIAM Rev. 51, 661. DOI . ADS .

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Clette, F., Svalgaard, L., Vaquero, J.M., Cliver, E.W.: 2014, Revisiting the sunspot number. A 400-year perspective on the solar cycle. Space Sci. Rev. 186, 35. DOI . ADS .

    Article  ADS  Google Scholar 

  • Dikpati, M., Charbonneau, P.: 1999, A Babcock–Leighton flux transport dynamo with solar-like differential rotation. Astrophys. J. 518, 508. DOI . ADS .

    Article  ADS  Google Scholar 

  • D’Silva, S., Howard, R.F.: 1993, Limits on the magnetic field strength at the base of the solar convection zone. Solar Phys. 148, 1. DOI . ADS .

    Article  ADS  Google Scholar 

  • Eddy, J.A.: 1976, The Maunder minimum. Science 192, 1189. DOI . ADS .

    Article  ADS  Google Scholar 

  • Fan, Y.: 2009, The emergence of a twisted flux tube into the solar atmosphere: sunspot rotations and the formation of a coronal flux rope. Astrophys. J. 697, 1529. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gibson, S.E., Zhao, L., Fisk, L.A.: 2011, The solar wind structure and heliospheric magnetic field in the solar Cycle 23 – 24 minimum and in the increasing phase of Cycle 24. In: AGU Fall Meeting Abstracts, SH31D. ADS .

    Google Scholar 

  • Gleissberg, W.: 1944, A secular change in the shape of the spot-frequency curve. Observatory 65, 244. ADS .

    ADS  Google Scholar 

  • Hathaway, D.H.: 2009, Solar cycle forecasting. Space Sci. Rev. 144, 401. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hazra, S., Passos, D., Nandy, D.: 2014, A stochastically forced time delay solar dynamo model: self-consistent recovery from a maunder-like grand minimum necessitates a mean-field alpha effect. Astrophys. J. 789, 5. DOI . ADS .

    Article  ADS  Google Scholar 

  • Inceoglu, F., Arlt, R., Rempel, M.: 2017, The nature of grand minima and maxima from fully nonlinear flux transport dynamos. Astrophys. J. 848, 93. DOI . ADS .

    Article  ADS  Google Scholar 

  • Inceoglu, F., Simoniello, R., Knudsen, M.F., Karoff, C., Olsen, J., Turck-Chiéze, S., Jacobsen, B.H.: 2015, Grand solar minima and maxima deduced from 10Be and 14C : magnetic dynamo configuration and polarity reversal. Astron. Astrophys. 577, A20. DOI . ADS .

    Article  ADS  Google Scholar 

  • Jiang, J., Cameron, R.H., Schüssler, M.: 2015, The cause of the weak solar Cycle 24. Astrophys. J. 808, L28. DOI . ADS .

    Article  ADS  Google Scholar 

  • Jiang, J., Hathaway, D.H., Cameron, R.H., Solanki, S.K., Gizon, L., Upton, L.: 2014, Magnetic flux transport at the solar surface. Space Sci. Rev. 186, 491. DOI . ADS .

    Article  ADS  Google Scholar 

  • Käpylä, M.J., Käpylä, P.J., Olspert, N., Brandenburg, A., Warnecke, J., Karak, B.B., Pelt, J.: 2016, Multiple dynamo modes as a mechanism for long-term solar activity variations. Astron. Astrophys. 589, A56. DOI . ADS .

    Article  ADS  Google Scholar 

  • Karak, B.B., Miesch, M.: 2017, Solar cycle variability induced by tilt angle scatter in a Babcock–Leighton solar dynamo model. Astrophys. J. 847, 69. DOI . ADS .

    Article  ADS  Google Scholar 

  • Karak, B.B., Miesch, M.: 2018, Recovery from Maunder-like grand minima in a Babcock–Leighton solar dynamo model. Astrophys. J. Lett. 860, L26. DOI . ADS .

    Article  ADS  Google Scholar 

  • Karak, B.B., Jiang, J., Miesch, M.S., Charbonneau, P., Choudhuri, A.R.: 2014, Flux transport dynamos: from kinematics to dynamics. Space Sci. Rev. 186, 561. DOI . ADS .

    Article  ADS  Google Scholar 

  • Knudsen, M.F., Riisager, P., Jacobsen, B.H., Muscheler, R., Snowball, I., Seidenkrantz, M.-S.: 2009, Taking the pulse of the Sun during the Holocene by joint analysis of 14C and 10Be. Geophys. Res. Lett. 36, L16701. DOI . ADS .

    Article  ADS  Google Scholar 

  • Krause, F., Rädler, K.-H.: 1980, Mean-Field Magnetohydrodynamics and Dynamo Theory. Pergamon, Oxford. ADS .

    MATH  Google Scholar 

  • Küker, M., Arlt, R., Rüdiger, G.: 1999, The Maunder minimum as due to magnetic Lambda -quenching. Astron. Astrophys. 343, 977. ADS .

    ADS  Google Scholar 

  • Lemerle, A., Charbonneau, P.: 2017, A coupled \(2\times 2\)D Babcock–Leighton solar dynamo model. II. Reference dynamo solutions. Astrophys. J. 834, 133. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lemerle, A., Charbonneau, P., Carignan-Dugas, A.: 2015, A coupled \(2\times 2\)D Babcock–Leighton solar dynamo model. I. Surface magnetic flux evolution. Astrophys. J. 810, 78. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lepreti, F., Carbone, V., Veltri, P.: 2001, Solar flare waiting time distribution: varying-rate Poisson or Lévy function? Astrophys. J. 555, L133. DOI . ADS .

    Article  ADS  Google Scholar 

  • McClintock, B.H., Norton, A.A.: 2013, Recovering joy’s law as a function of solar cycle, hemisphere, and longitude. Solar Phys. 287, 215. DOI . ADS .

    Article  ADS  Google Scholar 

  • Moss, D., Brooke, J.: 2000, Towards a model for the solar dynamo. Mon. Not. Roy. Astron. Soc. 315, 521. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mursula, K., Ulich, T.: 1998, A new method to determine the solar cycle length. Geophys. Res. Lett. 25, 1837. DOI . ADS .

    Article  ADS  Google Scholar 

  • Nagy, M., Lemerle, A., Labonville, F., Petrovay, K., Charbonneau, P.: 2017, The effect of “rogue” active regions on the solar cycle. Solar Phys. 292, 167. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ossendrijver, M.A.J.H.: 2000, Grand minima in a buoyancy-driven solar dynamo. Astron. Astrophys. 359, 364. ADS .

    ADS  Google Scholar 

  • Parker, E.N.: 1955, Hydromagnetic dynamo models. Astrophys. J. 122, 293. DOI . ADS .

    Article  ADS  MathSciNet  Google Scholar 

  • Passos, D., Nandy, D., Hazra, S., Lopes, I.: 2014, A solar dynamo model driven by mean-field alpha and Babcock–Leighton sources: fluctuations, grand-minima-maxima, and hemispheric asymmetry in sunspot cycles. Astron. Astrophys. 563, A18. DOI . ADS .

    Article  ADS  Google Scholar 

  • Petrovay, K.: 2010, Solar cycle prediction. Liv. Rev. Solar Phys. 7, 6. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pipin, V.V., Kosovichev, A.G.: 2011, Mean-field solar dynamo models with a strong meridional flow at the bottom of the convection zone. Astrophys. J. 738, 104. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ribes, J.C., Nesme-Ribes, E.: 1993, The solar sunspot cycle in the Maunder minimum AD1645 to AD1715. Astron. Astrophys. 276, 549. ADS .

    ADS  Google Scholar 

  • Sanchez, S., Fournier, A., Aubert, J.: 2014, The predictability of advection-dominated flux-transport solar dynamo models. Astrophys. J. 781, 8. DOI . ADS .

    Article  ADS  Google Scholar 

  • Sokoloff, D., Nesme-Ribes, E.: 1994, The Maunder minimum: a mixed-parity dynamo mode? Astron. Astrophys. 288, 293. ADS .

    ADS  Google Scholar 

  • Solanki, S.K., Usoskin, I.G., Kromer, B., Schüssler, M., Beer, J.: 2004, Unusual activity of the Sun during recent decades compared to the previous 11,000 years. Nature 431, 1084. DOI . ADS .

    Article  ADS  Google Scholar 

  • Steinhilber, F., Abreu, J.A., Beer, J., Brunner, I., Christl, M., Fischer, H., Heikkila, U., Kubik, P.W., Mann, M., McCracken, K.G., Miller, H., Miyahara, H., Oerter, H., Wilhelms, F.: 2012, 9,400 years of cosmic radiation and solar activity from ice cores and tree rings. Proc. Indian Natl. Sci. 109, 5967. DOI . ADS .

    Article  ADS  Google Scholar 

  • Svalgaard, L., Cliver, E.W., Kamide, Y.: 2005, Sunspot cycle 24: smallest cycle in 100 years? Geophys. Res. Lett. 32, L01104. DOI . ADS .

    Article  ADS  Google Scholar 

  • Tobias, S.M.: 1997, The solar cycle: parity interactions and amplitude modulation. Astron. Astrophys. 322, 1007. ADS .

    ADS  Google Scholar 

  • Usoskin, I.G.: 2013, A history of solar activity over millennia. Liv. Rev. Solar Phys. 10, 1. DOI . ADS .

    Article  ADS  Google Scholar 

  • Usoskin, I.G.: 2017, A history of solar activity over millennia. Liv. Rev. Solar Phys. 14, 3. DOI . ADS .

    Article  ADS  Google Scholar 

  • Usoskin, I.G., Mursula, K., Kovaltsov, G.A.: 2000, Regular and random components of sunspot activity during active sun and great minima: model simulation. In: Wilson, A. (ed.) The Solar Cycle and Terrestrial Climate, Solar and Space Weather, SP-463, ESA, Noordwijk, 447. ADS .

    Google Scholar 

  • Usoskin, I.G., Mursula, K., Kovaltsov, G.A.: 2003, Reconstruction of monthly and yearly group sunspot numbers from sparse daily observations. Solar Phys. 218, 295. DOI . ADS .

    Article  ADS  Google Scholar 

  • Usoskin, I.G., Solanki, S.K., Kovaltsov, G.A.: 2007, Grand minima and maxima of solar activity: new observational constraints. Astron. Astrophys. 471, 301. DOI . ADS .

    Article  ADS  Google Scholar 

  • Usoskin, I.G., Hulot, G., Gallet, Y., Roth, R., Licht, A., Joos, F., Kovaltsov, G.A., Thébault, E., Khokhlov, A.: 2014, Evidence for distinct modes of solar activity. Astron. Astrophys. 562, L10. DOI . ADS .

    Article  ADS  Google Scholar 

  • Usoskin, I.G., Kovaltsov, G.A., Lockwood, M., Mursula, K., Owens, M., Solanki, S.K.: 2016a, A new calibrated sunspot group series since 1749: statistics of active day fractions. Solar Phys. 291, 2685. DOI . ADS .

    Article  ADS  Google Scholar 

  • Usoskin, I.G., Gallet, Y., Lopes, F., Kovaltsov, G.A., Hulot, G.: 2016b, Solar activity during the Holocene: the Hallstatt cycle and its consequence for grand minima and maxima. Astron. Astrophys. 587, A150. DOI . ADS .

    Article  ADS  Google Scholar 

  • Vecchio, A., Lepreti, F., Laurenza, M., Alberti, T., Carbone, V.: 2017, Connection between solar activity cycles and grand minima generation. Astron. Astrophys. 599, A58. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Lean, J., Sheeley, N.R. Jr.: 2002, Role of a variable meridional flow in the secular evolution of the Sun’s polar fields and open flux. Astrophys. J. Lett. 577, L53. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N.R. Jr.: 1991, Magnetic flux transport and the sun’s dipole moment – new twists to the Babcock–Leighton model. Astrophys. J. 375, 761. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wheatland, M.S.: 2000, The origin of the solar flare waiting-time distribution. Astrophys. J. Lett. 536, L109. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wheatland, M.S.: 2003, The coronal mass ejection waiting-time distribution. Solar Phys. 214, 361. DOI . ADS .

    Article  ADS  Google Scholar 

  • Whitbread, T., Yeates, A.R., Muñoz-Jaramillo, A., Petrie, G.J.D.: 2017, Parameter optimization for surface flux transport models. Astron. Astrophys. 607, A76. DOI . ADS .

    Article  ADS  Google Scholar 

  • Yeates, A.R., Baker, D., van Driel-Gesztelyi, L.: 2015, Source of a prominent poleward surge during solar Cycle 24. Solar Phys. 290, 3189. DOI . ADS .

    Article  ADS  Google Scholar 

  • Yeates, A.R., Muñoz-Jaramillo, A.: 2013, Kinematic active region formation in a three-dimensional solar dynamo model. Mon. Not. Roy. Astron. Soc. 436, 3366. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ziȩba, S., Nieckarz, Z.: 2014, Sunspot time series: passive and active intervals. Solar Phys. 289, 2705. DOI . ADS .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Discovery Grant Program of Canada’s Natural Sciences and Engineering Research Council. Special thanks to Ilya G. Usoskin for kindly providing their most recent reconstructed solar-activity time series based on 10Be and 14C cosmogenic radioisotopes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deniz Ölçek.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ölçek, D., Charbonneau, P., Lemerle, A. et al. Grand Activity Minima and Maxima via Dual Dynamos. Sol Phys 294, 99 (2019). https://doi.org/10.1007/s11207-019-1492-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-019-1492-9

Keywords

Navigation