Log in

The Effect of “Rogue” Active Regions on the Solar Cycle

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The origin of cycle-to-cycle variations in solar activity is currently the focus of much interest. It has recently been pointed out that large individual active regions with atypical properties can have a significant impact on the long-term behavior of solar activity. We investigate this possibility in more detail using a recently developed \(2\times2\mathrm{D}\) dynamo model of the solar magnetic cycle. We find that even a single “rogue” bipolar magnetic region (BMR) in the simulations can have a major effect on the further development of solar activity cycles, boosting or suppressing the amplitude of subsequent cycles. In extreme cases, an individual BMR can completely halt the dynamo, triggering a grand minimum. Rogue BMRs also have the potential to induce significant hemispheric asymmetries in the solar cycle. To study the effect of rogue BMRs in a more systematic manner, a series of dynamo simulations were conducted, in which a large test BMR was manually introduced in the model at various phases of cycles of different amplitudes. BMRs emerging in the rising phase of a cycle can modify the amplitude of the ongoing cycle, while BMRs emerging in later phases will only affect subsequent cycles. In this model, the strongest effect on the subsequent cycle occurs when the rogue BMR emerges around cycle maximum at low latitudes, but the BMR does not need to be strictly cross-equatorial. Active regions emerging as far as \(20^{\circ}\) from the equator can still have a significant effect. We demonstrate that the combined effect of the magnetic flux, tilt angle, and polarity separation of the BMR on the dynamo is via their contribution to the dipole moment, \(\delta D_{\mathrm{BMR}}\). Our results indicate that prediction of the amplitude, starting epoch, and duration of a cycle requires an accurate accounting of a broad range of active regions emerging in the previous cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Notes

  1. Throughout this article, \(\alpha \) is taken to increase in the clockwise direction. For normally oriented active regions obeying Joy’s law, \(\alpha \) is then positive on the N hemisphere and negative on the S hemisphere.

References

  • Baumann, I., Schmitt, D., Schüssler, M.: 2006, A necessary extension of the surface flux transport model. Astron. Astrophys. 446, 307. DOI .

    Article  ADS  Google Scholar 

  • Baumann, I., Schmitt, D., Schüssler, M., Solanki, S.K.: 2004, Evolution of the large-scale magnetic field on the solar surface: a parameter study. Astron. Astrophys. 426, 1075. DOI .

    Article  ADS  Google Scholar 

  • Belucz, B., Dikpati, M.: 2013, Role of asymmetric meridional circulation in producing North–South asymmetry in a solar cycle dynamo model. Astrophys. J. 779, 4. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cameron, R., Schüssler, M.: 2015, The crucial role of surface magnetic fields for the solar dynamo. Science 347, 1333. DOI .

    Article  ADS  Google Scholar 

  • Cameron, R.H., Jiang, J., Schmitt, D., Schüssler, M.: 2010, Surface flux transport modeling for Solar Cycles 15–21: effects of cycle-dependent tilt angles of sunspot groups. Astrophys. J. 719, 264. DOI .

    Article  ADS  Google Scholar 

  • Cameron, R.H., Jiang, J., Schüssler, M., Gizon, L.: 2014, Physical causes of solar cycle amplitude variability. J. Geophys. Res., Space Phys. 119, 680. DOI .

    Article  ADS  Google Scholar 

  • Charbonneau, P., St-Jean, C., Zacharias, P.: 2005, Fluctuations in Babcock–Leighton dynamos. I. Period doubling and transition to chaos. Astrophys. J. 619, 613. DOI .

    Article  ADS  Google Scholar 

  • Charbonneau, P., Christensen-Dalsgaard, J., Henning, R., Larsen, R.M., Schou, J., Thompson, M.J., Tomczyk, S.: 1999, Helioseismic constraints on the structure of the solar tachocline. Astrophys. J. 527, 445. DOI .

    Article  ADS  Google Scholar 

  • Choudhuri, A.R., Chatterjee, P., Jiang, J.: 2007, Predicting Solar Cycle 24 with a solar dynamo model. Phys. Rev. Lett. 98, 131103. DOI .

    Article  ADS  Google Scholar 

  • Dasi-Espuig, M., Solanki, S.K., Krivova, N.A., Cameron, R., Peñuela, T.: 2010, Sunspot group tilt angles and the strength of the solar cycle. Astron. Astrophys. 518, A7. DOI .

    Article  ADS  Google Scholar 

  • Dikpati, M., Charbonneau, P.: 1999, A Babcock–Leighton flux transport dynamo with solar-like differential rotation. Astrophys. J. 518, 508. DOI .

    Article  ADS  Google Scholar 

  • Dikpati, M., Gilman, P.A., de Toma, G., Ulrich, R.K.: 2010, Impact of changes in the Sun’s conveyor-belt on recent solar cycles. Geophys. Res. Lett. 37, L14107. DOI . ADS .

    ADS  Google Scholar 

  • Fan, Y.: 2009, Magnetic fields in the solar convection zone. Living Rev. Solar Phys. 6, 4 DOI .

    Article  ADS  Google Scholar 

  • Hathaway, D.H., Upton, L.: 2014, The solar meridional circulation and sunspot cycle variability. J. Geophys. Res., Space Phys. 119, 3316. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hathaway, D.H., Upton, L.A.: 2016, Predicting the amplitude and hemispheric asymmetry of Solar Cycle 25 with surface flux transport. J. Geophys. Res., Space Phys. 121, 10. DOI . ADS .

    Article  Google Scholar 

  • Hazra, G., Choudhuri, A.R., Miesch, M.S.: 2017, A theoretical study of the build-up of the Sun’s polar magnetic field by using a 3D kinematic dynamo model. Astrophys. J. 835, 39. DOI .

    Article  ADS  Google Scholar 

  • Jiang, J., Cameron, R.H., Schüssler, M.: 2014, Effects of the scatter in sunspot group tilt angles on the large-scale magnetic field at the solar surface. Astrophys. J. 791, 5. DOI .

    Article  ADS  Google Scholar 

  • Jiang, J., Cameron, R.H., Schüssler, M.: 2015, The cause of the weak Solar Cycle 24. Astrophys. J. Lett. 808, L28. DOI . ADS .

    Article  ADS  Google Scholar 

  • Jiang, J., Işik, E., Cameron, R.H., Schmitt, D., Schüssler, M.: 2010, The effect of activity-related meridional flow modulation on the strength of the solar polar magnetic field. Astrophys. J. 717, 597. DOI .

    Article  ADS  Google Scholar 

  • Jiang, J., Hathaway, D.H., Cameron, R.H., Solanki, S.K., Gizon, L., Upton, L.: 2014, Magnetic flux transport at the solar surface. Space Sci. Rev. 186, 491. DOI .

    Article  ADS  Google Scholar 

  • Lemerle, A., Charbonneau, P.: 2017, A coupled \(2\times2\mathrm{D}\) Babcock–Leighton solar dynamo model. II. Reference dynamo solutions. Astrophys. J. 834, 133. DOI .

    Article  ADS  Google Scholar 

  • Lemerle, A., Charbonneau, P., Carignan-Dugas, A.: 2015, A coupled \(2\times2\mathrm{D}\) Babcock–Leighton solar dynamo model. I. Surface magnetic flux evolution. Astrophys. J. 810, 78. DOI .

    Article  ADS  Google Scholar 

  • McClintock, B.H., Norton, A.A., Li, J.: 2014, Re-examining sunspot tilt angle to include anti-hale statistics. Astrophys. J. 797, 130. DOI .

    Article  ADS  Google Scholar 

  • Miesch, M.S., Dikpati, M.: 2014, A three-dimensional Babcock–Leighton solar dynamo model. Astrophys. J. Lett. 785, L8. DOI . ADS .

    Article  ADS  Google Scholar 

  • Muñoz-Jaramillo, A., Dasi-Espuig, M., Balmaceda, L.A., DeLuca, E.E.: 2013, Solar cycle propagation, memory, and prediction: insights from a century of magnetic proxies. Astrophys. J. Lett. 767, L25. DOI .

    Article  ADS  Google Scholar 

  • Muñoz-Jaramillo, A., Senkpeil, R.R., Windmueller, J.C., Amouzou, E.C., Longcope, D.W., Tlatov, A.G., Nagovitsyn, Y.A., Pevtsov, A.A., Chapman, G.A., Cookson, A.M., Yeates, A.R., Watson, F.T., Balmaceda, L.A., DeLuca, E.E., Martens, P.C.H.: 2015, Small-scale and global dynamos and the area and flux distributions of active regions, sunspot groups, and sunspots: a multi-database study. Astrophys. J. 800, 48. DOI .

    Article  ADS  Google Scholar 

  • Petrie, G.J.D., Petrovay, K., Schatten, K.: 2014, Solar polar fields and the 22-year activity cycle: observations and models. Space Sci. Rev. 186, 325. DOI .

    Article  ADS  Google Scholar 

  • Petrovay, K.: 2010, Solar cycle prediction. Living Rev. Solar Phys. 7, 6. DOI .

    Article  ADS  Google Scholar 

  • Schatten, K.H., Scherrer, P.H., Svalgaard, L., Wilcox, J.M.: 1978, Using dynamo theory to predict the sunspot number during Solar Cycle 21. Geophys. Res. Lett. 5, 411. DOI .

    Article  ADS  Google Scholar 

  • Svalgaard, L., Cliver, E.W., Kamide, Y.: 2005, Sunspot cycle 24: smallest cycle in 100 years? Geophys. Res. Lett. 32, L01104. DOI .

    Article  ADS  Google Scholar 

  • Tlatov, A.G., Pevtsov, A.A.: 2014, Bimodal distribution of magnetic fields and areas of sunspots. Solar Phys. 289, 1143. DOI .

    Article  ADS  Google Scholar 

  • Toriumi, S., Schrijver, C.J., Harra, L.K., Hudson, H., Nagashima, K.: 2017, Magnetic properties of solar active regions that govern large solar flares and eruptions. Astrophys. J. 834, 56. DOI .

    Article  ADS  Google Scholar 

  • Upton, L., Hathaway, D.H.: 2014, Effects of meridional flow variations on Solar Cycles 23 and 24. Astrophys. J. 792, 142. DOI . ADS .

    Article  ADS  Google Scholar 

  • van Ballegooijen, A.A., Choudhuri, A.R.: 1988, The possible role of meridional flows in suppressing magnetic buoyancy. Astrophys. J. 333, 965. DOI .

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Nash, A.G., Sheeley, N.R. Jr.: 1989, Magnetic flux transport on the Sun. Science 245, 712. DOI .

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N.R. Jr.: 1991, Magnetic flux transport and the sun’s dipole moment – new twists to the Babcock–Leighton model. Astrophys. J. 375, 761. DOI .

    Article  ADS  Google Scholar 

  • Yeates, A.R., Baker, D., van Driel-Gesztelyi, L.: 2015, Source of a prominent poleward surge during Solar Cycle 24. Solar Phys. 290, 3189. DOI .

    Article  ADS  Google Scholar 

  • Yeates, A.R., Muñoz-Jaramillo, A.: 2013, Kinematic active region formation in a three-dimensional solar dynamo model. Mon. Not. Roy. Astron. Soc. 436, 3366. DOI . ADS .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This project was partially funded by the European Union’s Horizon 2020 research and innovation program under grant agreement No. 739500, by the Discovery Grant Program of the Natural Sciences and Engineering Research Council of Canada, and by the Campus Mundi Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melinda Nagy.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagy, M., Lemerle, A., Labonville, F. et al. The Effect of “Rogue” Active Regions on the Solar Cycle. Sol Phys 292, 167 (2017). https://doi.org/10.1007/s11207-017-1194-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-017-1194-0

Keywords

Navigation