Log in

Ultra-fast AND gate using single semi-reflective quantum dot semiconductor optical amplifier

  • Manuscript
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

Semi-reflective quantum dot semiconductor optical amplifier (SR-QDSOA) is utilized to design ultra-fast (1 Tb/s) optical logic AND gate. The AND gate is simulated using rate equation model, and different parameters like extinction ratio (ER ~ 30.2 dB), contrast ratio (CR ~ 31.3 dB), amplitude modulation (AM < 0.002 dB) and quality factor (Q ~ 38 dB) are calculated. Pseudo eye diagram (PED) shows clear eye opening with large relative eye opening (REO ~ 99%) signifies efficient performance. Effect of amplified spontaneous noise and data rate are also investigated on the performance of the logic gate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

There is no associated data with this publication.

References

  1. Ji, Y., Wang, H., Cui, J., et al.: All-optical signal processing technologies in flexible optical networks. Photon Netw. Commun. 38, 14–36 (2019). https://doi.org/10.1007/s11107-019-00838-y

    Article  Google Scholar 

  2. Ali, F., Muhammad, F., Habib, U., et al.: Modeling and minimization of FWM effects in DWDM-based long-haul optical communication systems. Photon Netw. Commun. 41, 36–46 (2021). https://doi.org/10.1007/s11107-020-00913-9

    Article  Google Scholar 

  3. Eid, M.M.A., Mohammed, A.E.-N.A., Rashed, A.N.Z.: Simulative study on the cascaded stages of traveling wave semiconductor optical amplifiers based multiplexing schemes for fiber optic systems improvement. J. Opt. Commun. (2021). https://doi.org/10.1515/joc-2020-0281

    Article  Google Scholar 

  4. Raja, A., Mukherjee, K., Roy, J.N.: Design analysis and applications of all-optical multifunctional logic using a semiconductor optical amplifier-based polarization rotation switch. J. Comput. Electron. 20, 387–396 (2021). https://doi.org/10.1007/s10825-020-01607-1

    Article  Google Scholar 

  5. Raja, A., Mukherjee, K., Roy, J.N.: Analysis of new all optical polarization-encoded dual SOA-based ternary NOT & XOR gate with simulation. Photon Netw. Commun. 41, 242–251 (2021). https://doi.org/10.1007/s11107-021-00932-0

    Article  Google Scholar 

  6. Okada, T., Kobayashi, R., Rui, W., Sagara, M., Matsuura, M.: Photonic digital-to-analog conversion using a blue frequency chirp in a semiconductor optical amplifier. Opt. Lett. 45, 1483–1486 (2020)

    Article  Google Scholar 

  7. Sharma, S., Roy, S.: Design of all-optical parallel multipliers using semiconductor optical amplifier-based Mach–Zehnder interferometers. J. Supercomput. (2021). https://doi.org/10.1007/s11227-020-03543-0

    Article  Google Scholar 

  8. Zhie, Z., Xuelei, F., Kai**, W., Honghai, W., Zhengying, L.: Research on polarization characteristics of a semiconductor optical amplifier fiber ring laser. In: 2020 5th International Conference on Smart Grid and Electrical Automation (ICSGEA), pp. 145–148 (2020). https://doi.org/10.1109/ICSGEA51094.2020.00038.

  9. Mukherjee, K., Raja, A.: Three input NAND gate using semiconductor optical amplifier. In: 2020 IEEE VLSI device circuit and system (VLSI DCS), pp. 142-145 (2020). https://doi.org/10.1109/VLSIDCS47293.2020.9179931

  10. Kotb, A., Zoiros, K.E., Guo, C.: 320 Gb/s all-optical XOR gate using semiconductor optical amplifier-Mach–Zehnder interferometer and delayed interferometer. Photon Netw. Commun. 38, 177–184 (2019). https://doi.org/10.1007/s11107-019-00844-0

    Article  Google Scholar 

  11. Mukherjee, K., Raja, A., Maji, K.: All-optical logic gate NAND using semiconductor optical amplifiers with simulation. J. Opt. 48, 357–364 (2019). https://doi.org/10.1007/s12596-019-00555-9

    Article  Google Scholar 

  12. Han, B., Xu, J., Chen, P., Guo, R., Gu, Y., Ning, Y., Liu, Y.: All-optical non-inverted parity generator and checker based on semiconductor optical amplifiers. Appl. Sci. 11, 1499 (2021). https://doi.org/10.3390/app11041499

    Article  Google Scholar 

  13. Singh, K., Kaur, G., Singh, M.L.: Enhanced performance of all-optical half-subtracter based on cross-gain modulation (XGM) in semiconductor optical amplifier (SOA) by accelerating its gain recovery dynamics. Photon Netw. Commun. 34, 111–130 (2017). https://doi.org/10.1007/s11107-016-0677-5

    Article  Google Scholar 

  14. Moshfe, S., Abedi, K., Moravvej-Farshi, M.K.: An integrated 2-bit all optical analog to digital converter based on photonic crystal semiconductor optical amplifier. Opt. Quant. Electron 53, 212 (2021). https://doi.org/10.1007/s11082-021-02858-3

    Article  Google Scholar 

  15. Kaur, S., Prakash, A.: All-optical comparator using logic operations based on nonlinear properties of semiconductor optical amplifier. J. Opt. 47, 104–109 (2018). https://doi.org/10.1007/s12596-017-0421-2

    Article  Google Scholar 

  16. Wang, B.: A research on all-optical wavelength conversion technology based on SOA. In: 2021 11th International Conference on Power, Energy and Electrical Engineering (CPEEE), pp. 76–81 (2021). https://doi.org/10.1109/CPEEE51686.2021.9383386

  17. Hakimian, F., Shayesteh, M.R., Moslemi, M.R.: Optimization of four-wave mixing wavelength conversion in a quantum-dot semiconductor optical amplifier based on the genetic algorithm. Opt. Quant. Electron 53, 140 (2021). https://doi.org/10.1007/s11082-021-02763-9

    Article  Google Scholar 

  18. Singh, S., Singh, S., Badraoui, N., et al.: Design and analysis of all-optical up- and down-wavelength converter based on FWM of SOA-MZI for 60 Gbps RZ data signal. Photon Netw. Commun. 34, 288–297 (2017). https://doi.org/10.1007/s11107-017-0696-x

    Article  Google Scholar 

  19. Raja, A., Mukherjee, K., Roy, J.N.: Polarization rotation-based all-optical AND gate using single semiconductor optical amplifier and implementation of a majority gate. J. Opt. Commun. (2021). https://doi.org/10.1515/joc-2020-0303

    Article  Google Scholar 

  20. Mukherjee, K.: A terabit-per-second all-optical four-bit digital-to-analog converter using quantum dot semiconductor optical amplifiers. J. Comput. Electron. (2021). https://doi.org/10.1007/s10825-021-01675-x

    Article  Google Scholar 

  21. Sagara, M., Okada, T., Rui, W., Matsuura, M.: 4-bit resolution of photonic digital-to-analog conversion by frequency chirp in a QD-SOA. Opt. Electron. Commun. Conf. (OECC) 2020, 1–3 (2020). https://doi.org/10.1109/OECC48412.2020.9273640

    Article  Google Scholar 

  22. Mukherjee, K., Dutta, S., Roy, S., et al.: All-optical digital to analog converter using Tera Hertz optical asymmetric demultiplexer based on quantum dot semiconductor optical amplifier. Opt. Quant. Electron. 53, 242 (2021). https://doi.org/10.1007/s11082-021-02900-4

    Article  Google Scholar 

  23. Kotb, A., Guo, C.: All-optical NOR and XNOR logic gates at 2 Tb/s based on two-photon absorption in quantum-dot semiconductor optical amplifiers. Opt. Quant. Electron. 52, 30 (2020). https://doi.org/10.1007/s11082-019-2142-z

    Article  Google Scholar 

  24. Fouskidis, D.E., Zoiros, K.E., Hatziefremidis, A.: Reconfigurable all-optical logic gates (AND, NOR, NOT, OR) with quantum-dot semiconductor optical amplifier and optical filter. IEEE J. Sel. Topics Quant. Electron. 27(2), 1–15 (2021). https://doi.org/10.1109/JSTQE.2020.3023807

    Article  Google Scholar 

  25. Komatsu, K., Hosoya, G., Yashima, H.: All-optical logic NOR gate using a single quantum-dot SOA-assisted an optical filter. Opt. Quant. Electron. 50, 131 (2018). https://doi.org/10.1007/s11082-018-1384-5

    Article  Google Scholar 

  26. Lee, D., Mai, V.V., Kim, H.: Mitigation of scintillation in FSOC using RSOA-based spectrum-sliced incoherent light. IEEE Photon. Technol. Lett. 33(5), 227–230 (2021). https://doi.org/10.1109/LPT.2021.3053565

    Article  Google Scholar 

  27. Zoiros, K.E., Kastritsis, D., Rampone, T., et al.: Reflective semiconductor optical amplifier pattern effect compensation with birefringent fiber loop. Opt. Quant. Electron. 52, 366 (2020). https://doi.org/10.1007/s11082-020-02485-4

    Article  Google Scholar 

  28. Rizou, Z.V., Zoiros, K.E., Rampone, T., Sharaiha, A.: Reflective semiconductor optical amplifier direct modulation capability enhancement using birefringent fiber loop. Appl. Sci. 10, 5328 (2020). https://doi.org/10.3390/app10155328

    Article  Google Scholar 

  29. Mandal, P., Mallick, K., Dutta, B., et al.: Mitigation of Rayleigh backscattering in RoF-WDM-PON employing self coherent detection and bi-directional cross wavelength technique. Opt. Quant. Electron. 53, 77 (2021). https://doi.org/10.1007/s11082-020-02720-y

    Article  Google Scholar 

  30. Babic, J., Totovic, A.R., Crnjanski, J.V., Krstic, M.M., Mashanovitch, M.L., Gvozdic, D.M.: Exploiting inductive peaking for enhancing the RSOA’s large-signal modulation performance. J. Lightw. Technol. (2011). https://doi.org/10.1109/JLT.2021.3069660

    Article  Google Scholar 

  31. Kotb, A., Guo, C.: 120 Gb/s all-optical NAND logic gate using reflective semiconductor optical amplifiers. J. Modern Opt. 67(12), 1138–1144 (2020). https://doi.org/10.1080/09500340.2020.1813342

    Article  MathSciNet  Google Scholar 

  32. Mukherjee, K., Maji, K., Raja, A.: All optical four bit two's complement generator and single bit comparator using reflective semiconductor optical amplifier, IJNBM,9,1-2,64-79 (2020). https://doi.org/10.1504/IJNBM.2020.107416.

  33. Maji, K., Mukherjee, K., Raja, A.: Performance of all-optical logic soliton-based AND gate using reflective semiconductor optical amplifier (RSOA). In: Kundu, S., Acharya, U., De, C., Mukherjee, S. (eds.) Proceedings of the 2nd International Conference on Communication Devices and Computing. Lecture Notes in Electrical Engineering, vol. 602. Springer: Singapore (2020)

  34. Mukherjee, K., Majhi, K., Raja, A.: A novel approach to all-optical universal soliton logic gate NAND utilizing reflective semiconductor optical amplifiers. J. Opt. 49, 516–522 (2020). https://doi.org/10.1007/s12596-020-00645-z

    Article  Google Scholar 

  35. Anzabi, K.S., Habibzadeh-Sharif, A., Connelly, M.J., Rostami, A.: Wideband steady-state and pulse propagation modeling of a reflective quantum-dot semiconductor optical amplifier. J. Lightw. Technol. 38, 797–803 (2020)

    Article  Google Scholar 

  36. Anzabi, K.S., Sharif, A.H., et al.: Performance enhancement of an all-optical XOR gate using quantum-dot based reflective semiconductor optical amplifiers in a folded Mach–Zehnder interferometer. Opt. Laser Technol. 135, 106628 (2021)

    Article  Google Scholar 

  37. Nady Abdul Aleem, M., Hussein, K.F.A., Ammar, A.-E.-H.A.: Ultrafast all-optical full adder using quantum-dot semiconductor optical amplifier-based mach-zehnder interferometer. Prog. Electromagn. Res. B 54, 69–88 (2013). https://doi.org/10.2528/pierb13063006

    Article  Google Scholar 

  38. Hu, H., Zhang, X., Zhao, S., Zhang, L.: High-speed all-optical logic gate using QD-SOA and its application. Cogent. Phys. 4, 1 (2017). https://doi.org/10.1080/23311940.2017.1388156

    Article  Google Scholar 

  39. Rendón-Salgado, I., Gutiérrez-Castrejón, R.: 160Gb/s all-optical AND gate using bulk SOA turbo–switched Mach–Zehnder interferometer. Opt. Commun. 399, 77–86 (2017). https://doi.org/10.1016/j.optcom.2017.04.054

    Article  Google Scholar 

  40. Rendón-Salgado, I., Ramírez-Cruz, E., Gutiérrez-Castrejón, R.: 640 Gb/s all-optical AND gate and wavelength converter using bulk SOA turbo–switched Mach–Zehnder interferometer with improved differential scheme. Opt. Laser. Technol. 109, 671–681 (2019). https://doi.org/10.1016/j.optlastec.2018.08.055

    Article  Google Scholar 

  41. Kotb, A., Zoiros, K.E., Guo, C.: 1 Tb/s all-optical XOR and AND gates using quantum-dot semiconductor optical amplifier-based turbo-switched Mach–Zehnder interferometer. J. Comput. Electron. 18, 628–639 (2019). https://doi.org/10.1007/s10825-019-01329-z

    Article  Google Scholar 

  42. Kotb, A., Guo, C.: All-optical multifunctional AND, NOR, and XNOR logic gates using semiconductor optical amplifiers. Phys. Scr. 95, 085506 (2020)

    Article  Google Scholar 

  43. Kim, T.Y., Kim, J.Y., Han, S.K.: All-optical regenerator using semi-reflective semiconductor optical amplifier. J. Opt. Soc. Korea 10(1), 11–15 (2006). https://doi.org/10.3807/JOSK.2006.10.1.011

    Article  Google Scholar 

  44. Nabeyama, A., Yashima, H.: All-optical switchable logic gate using a single QD-SOA for RZ-BPSK signal inputs. Opt. Quant. Electron. 53, 244 (2021). https://doi.org/10.1007/s11082-021-02892-1

    Article  Google Scholar 

  45. Zhang, X., Thapa, S., Dutta, N.K.: All-optical logic gates based on quantum-dot semiconductor optical amplifier. Int. J. High Speed Electron. Syst. 1(02), 131–141 (2018). https://doi.org/10.1142/S012915641840013X

    Article  Google Scholar 

  46. Wang, Y., Wang, H., Kong, X., et al.: Research on output characteristics based on QD-SOA and QD-RSOA cross gain modulation all-optical logic NOR gate. Opt. Quant. Electron. 53, 715 (2021). https://doi.org/10.1007/s11082-021-03372-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kousik Mukherjee.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, K. Ultra-fast AND gate using single semi-reflective quantum dot semiconductor optical amplifier. Photon Netw Commun 45, 97–106 (2023). https://doi.org/10.1007/s11107-023-00996-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-023-00996-0

Keywords

Navigation