Log in

Design analysis and applications of all-optical multifunctional logic using a semiconductor optical amplifier-based polarization rotation switch

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this communication, a new semiconductor optical amplifier (SOA)-based module for multi-valued logic units using the cross-polarization modulation effect is proposed and analyzed. The design is simple and compact, consisting of only three SOAs and a few passive optical elements. SOAs have very low switching power (< 1mW), and are very small (< 1 mm) and integrable into modern optical integrated circuits. Being multifunctional, the design is versatile; it can function as a demultiplexer, comparator, half adder, half subtractor, and as basic (OR, AND), universal (NOR, NAND), XOR, and XNOR logic gates. This design follows a tree architecture, operates at very high speed (~ 100Gbit/s), and provides a good Q factor (30 dB or more). The corresponding bit error rate (BER) is very low (~ 10–24). In this work, a relative eye opening as large as 90.4% is calculated. The variations in Q and BER with noise and control power are also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kotb, A., Guo, C.: All-optical multifunctional AND, NOR, and XNOR logic gates using semiconductor optical amplifiers, online first article. Phys. Scrip. IOP (2020). https://doi.org/10.1088/1402-4896/aba057

    Article  Google Scholar 

  2. Mukherjee, K.: Method of implementation of all optical tri state logic in frequency encoded format using non-linear material. Optik 124(17), 2807–2810 (2013)

    Article  Google Scholar 

  3. Chattopadhyay, T., Roy, J.N.: All-optical quaternary inverter (QNOT) using binary NOT gate. Optik 124(8), 667–674 (2013)

    Article  Google Scholar 

  4. Sawchuk, A.A., Strand, T.C.: Digital optical computing. Proc. IEEE 72(7), 758–779 (1984)

    Article  Google Scholar 

  5. Wu, W., Champbell, S., Zhou, S., Yeh, P.: Polarization encoded optical logic operation in photorefractive media. Opt. Lett. 18(20), 1742–1744 (1993)

    Article  Google Scholar 

  6. Martinelli, M., Martinelli, P., Pietralunga, S.M.: Polarization stabilization in optical communication system. IEEE J. Light. Technol. 24(11), 4172–4183 (2006)

    Article  Google Scholar 

  7. Said, Y., Rezig, H.: “SOAs nonlinearities and their applications for next generation of optical networks,” Chapter 2, Advances in Optical Amplifiers, Edited by Paul Urquhart, 2011, Intech Open

  8. Yoo, S.J.B.: Wavelength conversion technologies for WDM network applications. IEEE J. of Light. Technol. 14(6), 955–966 (1996)

    Article  Google Scholar 

  9. Mukherjee, K.: Semiconductor optical amplifier based frequency encoded logic gates exploiting nonlinear polarization rotation only. J. Circuit Syst. Comput. 23(9), 1450130 (2014)

    Article  Google Scholar 

  10. Dorren, H.J.S., Lenstra, D., Liu, Y., Hill, M.T., Khoe, G.D.: Nonlinear polarization rotation in semiconductor optical amplifiers: theory and applications to all-optical flip flop memories. IEEE J. Quantum Electron. 39(1), 141–148 (2003)

    Article  Google Scholar 

  11. Zhang, S., Liu, Y., Zhang, Q., Li, H., Liu, Y.: All optical sampling based on nonlinear polarization rotation in semiconductor optical amplifiers. J. Optoelectron. Biomed. Mater. 1(4), 383–388 (2009)

    Google Scholar 

  12. Wang, Y., Liu, X., Tian, Q., **n, X.: All optical flip flops and random access memory cells using the nonlinear polarization rotation effect of low polarization dependent semiconductor optical amplifier. Opt. Commun. 410, 846–854 (2018)

    Article  Google Scholar 

  13. Connelley, M.J.: Modelling of nonlinear polarization rotation in tensile strained semiconductor optical amplifiers using Muller matrices and carrier induced refractive index change calculations. Opt. Commun. 308, 70–73 (2018)

    Article  Google Scholar 

  14. Guo, L.Q., Connelly, M.J.: Signal induced birefringence and dichorism in a tensile-strained bulk semiconductor optical amplifier and its application to wavelength conversion. IEEE J. Light. Technol. 23(12), 4037–4045 (2005)

    Article  Google Scholar 

  15. Raja, A., Mukherjee, K., Roy, J.N., et al.: Analysis of new all-optical polarization-encoded quaternary Galois field adder processing soliton pulses. J. Opt. (2020). https://doi.org/10.1007/s12596-020-00594-7

    Article  Google Scholar 

  16. Komatsu, K., Hosoya, G., Yashima, H.: All optical NOR gate using a single quantum dot SOA assisted an optical filter. Opt. Quantum Electron. 50(131), 1–18 (2018)

    Google Scholar 

  17. Guo, L.Q., Connelley, M.J.: All optical AND gate with improved extinction ratio using signal induced non linearities in a bulk semiconductor optical amplifier. Opt. Exp. 14(7), 2938–2943 (2006)

    Article  Google Scholar 

  18. Maji, K., Mukherjee, K.: Analysis of soliton based NOR gate using dual-control terahertz optical asymmetric demultiplexer (TOAD). Int. J Photon. Opt. Technol. 4(4), 1–5 (2019)

    Google Scholar 

  19. Raja, A., Mukherjee, K., Roy, J.N., Maji, K.: Analysis of polarization encoded optical switch implementing cross polarization modulation effect in semiconductor optical amplifier. Int. J. Photon. Opt. Technol. 5(1), 1–5 (2019)

    Google Scholar 

  20. Mukherjee, K., Raja, A., Maji, K.: All-optical logic gate NAND using semiconductor optical amplifiers with simulation. J. Opt. (2019). https://doi.org/10.1007/s12596-019-00555-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Mukherjee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raja, A., Mukherjee, K. & Roy, J.N. Design analysis and applications of all-optical multifunctional logic using a semiconductor optical amplifier-based polarization rotation switch. J Comput Electron 20, 387–396 (2021). https://doi.org/10.1007/s10825-020-01607-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01607-1

Keywords

Navigation