Log in

Behavior of the central intensity of generalized humbert-gaussian beams against the atmospheric turbulence

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, we present a theoretical study of the propagation properties for Generalized Humbert-Gaussian beams (GHGBs) passing through a turbulent atmosphere. The axial intensity distribution of beams propagating through atmospheric turbulence is evaluated analytically based on the Huygens-Fresnel diffraction integral and the Rytov theory. The impact of the incident beam parameters and the turbulent strength on the output axial intensity is investigated through numerical illustrations. The results show that the propagation of GHGBs is faster when the atmosphere is very turbulent for small wavelength and small beam waist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andrews, L., Phillips, R.: Laser beam propagation through random media. SPIE Press, Washington (1998)

    Google Scholar 

  • Banakh, V., Falits, A.V.: Turbulent broadening of Laguerre-Gaussian beam in the atmosphere. Opt. Spectrosc. 117, 942–948 (2014)

    Article  ADS  Google Scholar 

  • Bandres, M.A., Gutierrez-Vega, J.C.: Circular beams. Opt. Lett. 33(2), 177–179 (2008)

    Article  ADS  Google Scholar 

  • Belafhal, A., Nebdi, H.: Generation and propagation of novel donut beams by a spiral phase plate: Humbert beams. Opt. Quantum Electron. 46, 201–208 (2014)

    Article  Google Scholar 

  • Boufalah, F., Dalil-Essakali, L., Nebdi, H., Belafhal, A.: Effect of turbulent atmosphere on the on-axis average intensity of Pearcey-Gaussian beam. Chin. Phys. b. 25, 064207–064213 (2016)

    Article  Google Scholar 

  • Boufalah, F., Dalil-Essakali, L., Ez-zariy, L., Belafhal, A.: Introduction of generalized Bessel–Laguerre–Gaussian beams and its central intensity travelling a turbulent atmosphere. Opt. Quantum Electron. 50, 3051–30520 (2018)

    Article  Google Scholar 

  • Cang, J., Zhang, Y.: Axial intensity distribution of truncated Bessel-Gauss beams in a turbulent atmosphere. Optik 121, 239–245 (2010)

    Article  ADS  Google Scholar 

  • Chen, B., Chen, Z., Ji-**ong, P.: Propagation of partially coherent Bessel-Gaussian beams in turbulent atmosphere. Opt. Laser Technol. 40, 820–827 (2008)

    Article  ADS  Google Scholar 

  • Eyyuboğlu, H.T.: Propagation and coherence properties of higher order partially coherent dark hollow beams in turbulence. Opt. Laser Technol. 40, 156–166 (2008)

    Article  ADS  Google Scholar 

  • Ez-zariy, L., Boufalah, F., Dalil-Essakali, L., Belafhal, A.: Effects of a turbulent atmosphere on an apertured Lommel-Gaussian beam. Optik 127, 11534–11543 (2016)

    Article  ADS  Google Scholar 

  • Gradshteyn, I.S., Ryzhik, I.M.: Tables of integrals, series and products, 5th edn. Academic Press, New York (1994)

    MATH  Google Scholar 

  • Hajjarian, Z., Kavehrad, M., Fadlullah, J.: Spatially multiplexed multi-input-multi-output optical imaging system in a turbid, turbulent atmosphere. Appl. Opt. 49, 1528–1538 (2010)

    Article  ADS  Google Scholar 

  • Hennani, S., Barmaki, S., Ez-zariy, L., Nebdi, H., Belafhal, A.: A theoretical investigation of the axial intensity distribution of truncated MQBG beam in a turbulent atmosphere. Phys. Chem. News 69, 44–51 (2013)

    Google Scholar 

  • Hricha, Z., Yaalou, M., Belafhal, A.: Intensity characteristics of double-half inverse Gaussian hollow beams through turbulent atmosphere. Opt. Quantum Electron. 52, 1–8 (2020)

    Article  Google Scholar 

  • Khannous, F., Boustimi, M., Nebdi, H., Belafhal, A.: Propagation analysis of the superposition of Kummer beams in a turbulent atmosphere. Phys. Chem. News 73, 83–89 (2014)

    Google Scholar 

  • Khannous, F., Boustimi, M., Nebdi, H., Belafhal, A.: On-axis average intensity of hypergeometric Gaussian beams type II propagating in a turbulent atmosphere. J. Mater. Environ 6, 2550–2556 (2015)

    Google Scholar 

  • Khannous, F., Boustimi, M., Nebdi, H., Belafhal, A.: Theoretical investigation on the Hollow Gaussian beams propagating in atmospheric turbulent. Chin. J. Phys. 54(2), 194–204 (2016)

    Article  MathSciNet  Google Scholar 

  • Kinani, A., Ez-zariy, L., Chafiq, A., Nebdi, H., Belafhal, A.: Effects of atmospheric turbulence on the propagation of Li’s flat-topped optical beams. Phys. Chem. News 61, 24–33 (2011)

    Google Scholar 

  • Korotkova, O.A., Gbur, G.: Angular spectrum representation for propagation of random electromagnetic beams in a turbulent atmosphere. J. Opt. Soc. Am. A Opt. 24, 2728–2736 (2007)

    Article  ADS  Google Scholar 

  • Liu, D., Wang, Y., Wang, G., Yin, H.: Intensity properties of flat-topped vortex hollow beams propagating in atmospheric turbulence. Optik 20, 9386–9393 (2016)

    Article  ADS  Google Scholar 

  • Luke, Y.L.: The special functions and their approximation, vol. I. Academic Press, Cambridge (1969)

    Google Scholar 

  • Mei, Q.X., Yue, Z.W., Zhong, R.R.: Long-distance propagation of pseudo-partially coherent Gaussian Schell-model beams in atmospheric turbulence. Chin. Phys. B. 21(9), 094202 (2012)

    Article  ADS  Google Scholar 

  • Navidpour, S.M., Uysal, M., Kavehrad, M.: BER performance of free-space optical transmission with spatial diversity. IEEE Trans. Wirel. Commun. 6, 2813–2819 (2007)

    Article  Google Scholar 

  • Nossir, N., Dalil-Essakali, L., Belafhal, A.: Propagation analysis of some doughnut lasers beams through a paraxial ABCD optical system. Opt. Quantum Electron. 52, 1–16 (2020a)

    Article  Google Scholar 

  • Nossir, N., Dalil-Essakali, L., Belafhal, A.: Diffraction of generalized Humbert-Gaussian beams by a helical axicon. Opt. Quantum Electron. 53(2), 1–13 (2021b)

    Google Scholar 

  • Qing, L.Y., Sen, W.Z., Jun, W.M.: Partially coherent Gaussian-Schell model pulse beam propagation in slant atmospheric turbulence. Chin. Phys. B. 23(6), 064216 (2014)

    Article  ADS  Google Scholar 

  • Qu, J., Zhong, Y., Zhifeng, C., Cai, Y.: Elegant Laguerre-Gaussian beam in a turbulent atmosphere. Opt. Commun. 283, 2772–2781 (2010)

    Article  ADS  Google Scholar 

  • Tanyer Eyyuboglu, H., Cai, Y.: Hypergeometric Gaussian beam and its propagation in turbulence. Optics Commun. 285(21–22), 4194–4199 (2012)

    Article  ADS  Google Scholar 

  • Wang, L.G., Zheng, W.W.: The effect of atmospheric turbulence on the propagation properties of optical vortices formed by using coherent laser beam arrays. J. Opt. a. 11, 1–7 (2009)

    Google Scholar 

  • Wen, J.J., Breazeal, M.A., Acoustic, J.: A diffraction beam field expressed as the superposition of Gaussian beams. Soc. Am. 83, 1752–1756 (1988)

    Google Scholar 

  • Wen, W., Chu, X., Ma, H.: The propagation of a combining Airy beam in turbulence. Opt. Commun. 336, 326–329 (2015)

    Article  ADS  Google Scholar 

  • Xu, J., Gao, J., Zhu, Y., Zhang, L., Zhang, Y.: Effects of atmospheric turbulence on the mode weight of the Laguerre-Gaussian Schell beams. Optk 125, 280–284 (2014)

    ADS  Google Scholar 

  • Yaalou, M., El Halba, E.M., Hricha, Z., Belafhal, A.: Propagation characteristics of dark and antidark Gaussian beams in turbulent atmosphere. Opt. Quantum Electron. 51, 2552–25510 (2019)

    Google Scholar 

  • Zhou, P., Liu, X., Xu, X., Chu, X.: Propagation of coherently combined flattened laser beam array in turbulent atmosphere. Opt. Laser Technol. 41, 403–407 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Belafhal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nossir, N., Dalil-Essakali, L. & Belafhal, A. Behavior of the central intensity of generalized humbert-gaussian beams against the atmospheric turbulence. Opt Quant Electron 53, 665 (2021). https://doi.org/10.1007/s11082-021-03316-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03316-w

Keywords

Navigation