Log in

Modeling the Tensile Behavior of Unidirectional C/SiC Ceramic-Matrix Composites

  • Published:
Mechanics of Composite Materials Aims and scope

The uniaxial tensile behavior of unidirectional C/SiC ceramic-matrix composites at room temperature has been investigated. An approach to predicting the uniaxial tensile stress–strain curve of the unidirectional ceramicmatrix composites is developed. The Budiansky–Hutchinson–Evans shear lag model is used to describe the microstress field of damaged composites. A statistical matrix cracking model, a fracture mechanics interface debonding criterion, and a statistical fiber failure model are used to determine the spacing of matrix cracks, the debonded length of interface, and the volume fraction of failed fibers. By combining the shear lag model and the three damage models, the stress–strain curve at each damage stage is constructed and an exact method for predicting the toughness and strength of the composites is established. The tensile stress–strain curves predicted by the present analysis agree well with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R. Naslain, “Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview,” Compos. Sci. Technol., 64, No.2, 155-170 (2004).

    Article  Google Scholar 

  2. F. S. Ji and L. R. Dharani, “Non-axisymmetric matrix cracking and interface debonding with friction in ceramic composites,” Appl. Compos. Mater., 5, No. 6, 379-397 (1998).

    Article  Google Scholar 

  3. W. A. Curtin, “Stress–strain behavior of brittle matrix composites, Comprehensive composite materials,” Elsevier Sci. Ltd. 4:47-76 (2000).

    Google Scholar 

  4. L. B. Li and Y. D. Song, “An approach to estimate interface shear stress of ceramic matrix composites from hysteresis loops,” Appl. Compos. Mater., 17, No. 3, 309-328 (2010).

    Article  Google Scholar 

  5. L. B. Li, Y. D. Song, and Z. G. Sun, “Influence of fiber Poisson contraction on matrix cracking development of ceramic matrix composites,” J. of Aerospace Power, 23, No. 12, 2196-2201 (2008). (in Chinese)

    Google Scholar 

  6. L. B. Li, Y. D. Song, and Z. G. Sun, “Uniaxial tensile behavior of unidirectional fiber reinforced ceramic matrix composites,” Acta Materiae Compositae Sinica, 25, No. 4, 154-160 (2008). (in Chinese)

    Google Scholar 

  7. B. Budiansky, J. W. Hutchinson, and A. G. Evans, “Matrix fracture in fiber-reinforced ceramics,” J. Mech. Phys. And Solids, 34, No. 2, 167-189 (1986).

    Article  Google Scholar 

  8. I. M. Daniel and J. W. Lee, “The behavior of ceramic matrix fiber composites under longitudinal loading,” Compos. Sci. Technol., 46, No. 2, 105-113 (1993).

    Article  Google Scholar 

  9. J. Aveston, G. A. Cooper, and A. Kelly, “Single and multiple fracture,” Properties of fiber composites: Conf. on Proceedings. England: National Physical Laboratory, IPC. 15-26 (1971).

  10. F. W. Zok and S. M. Spearing, “Matrix crack spacing in brittle matrix composites,” Acta Metallurgica et Materialia, 40, No. 8, 2033-2043 (1992).

    Article  Google Scholar 

  11. H. Zhu and Y. Weitsman, “The progression of failure mechanisms in unidirectional reinforced ceramic composites,” J. Mech. Phys. of Solids, 42, No. 10, 1601-1632 (1994).

    Article  Google Scholar 

  12. J. P. Solti, S. Mall, and D. D. Robertson, “Modeling damage in unidirectional ceramic-matrix composites,” Compos. Sci. Technol., 54, No.1, 55-66 (1995).

    Article  Google Scholar 

  13. W. A. Curtin, “Multiple matrix cracking in brittle matrix composites,” Acta Metallurgica et Materialia, 41, No. 5, 1369-77 (1993).

    Article  Google Scholar 

  14. C. H. Hsueh, “Crack-wake interface debonding criterion for fiber-reinforced ceramic composites,” Acta Materialia, 44, No. 6, 2211-2216 (1996).

    Article  Google Scholar 

  15. Y. C. Gao, Y. W. Mai, and B. Cotterell, “Fracture of fiber-reinforced materials,” Zeitschrift für Angewandte Mathematik und Physik (ZAMP), 39, No.4, 550-572 (1988).

    Article  Google Scholar 

  16. Y. J. Sun and R. N. Singh, “The generation of multiple matrix cracking and fiber-matrix interfacial debonding in a glass composite,” Acta Materialia, 46, No. 5, 1657-1667 (1998).

    Article  Google Scholar 

  17. M. D. Thouless and A. G. Evans, “Effects of pull-out on the mechanical properties of ceramic matrix composites,” Acta Metallurgica, 36, No. 3, 517-522 (1988).

    Article  Google Scholar 

  18. H. C. Cao and M. D. Thouless, “Tensile tests of ceramic-matrix composites: theory and experiment,” J. of the American Ceramic Society, 73, No.7, 2091-2094 (1990).

    Article  Google Scholar 

  19. M. Sutcu, “Weibull statistics applied to fiber failure in ceramic composites and work of fracture,” Acta Metallurgica, 37, No. 2, 651-661 (1989).

    Article  Google Scholar 

  20. H. R. Schwietert and P. S. Steif, “A theory for the ultimate strength of a brittle-matrix composite,” J. of the Mechanics Physics of Solids, 38, No. 3, 325-343 (1990).

    Article  Google Scholar 

  21. W. A. Curtin, “Theory of mechanical properties of ceramic-matrix composites,” J. of the American Ceramic Society, 74, No.11, 2837-2845 (1991).

    Article  Google Scholar 

  22. Y. Weitsman and H. Zhu, “Multi-fracture of ceramic composites,” J. of the Mechanics Physics of Solids, 41, No. 2, 351-388 (1993).

    Article  Google Scholar 

  23. F. Hild, J. M. Domergue, F. A. Leckie, A. G. Evans, “Tensile and flexural ultimate strength of fiber-reinforced ceramicmatrix composites,” Int. J. of Solids and Structures, 31, No. 7, 1035-1045 (1994).

    Article  Google Scholar 

  24. H. Zhu and Y. Weitsman, “The progression of failure mechanisms in unidirectional reinforced ceramic composites,” J. of Mechanics Physics of Solids, 42, No.10, 1601-1632 (1994).

    Article  Google Scholar 

  25. W. A. Curtin, B. K. Ahn, and N. Takeda, “Modeling brittle and tough stress-strain behavior in unidirectional ceramic matrix composites,” Acta Materialia, 46, No. 10, 3409-3420 (1998).

    Article  Google Scholar 

  26. R. Paar, J.-L.Valles, and R. Danzer, “Influence of fiber properties on the mechanical behavior of unidirectionallyreinforced ceramic matrix composites,” Mater. Sci. and Eng.: A, 250, No. 2, 209-216 (1998).

    Article  Google Scholar 

  27. K. Liao and K. L. Reifsnider, “A tensile strength model for unidirectional fiber-reinforced brittle matrix composite,” Int. J. of Fracture, 106, No. 2, 95-115 (2000).

    Article  Google Scholar 

  28. S. J. Zhou and W. A. Curtin, “Failure of fiber composites: a lattice green function model,” Acta Metallurgica et Materialia, 43, No. 8, 3093-3104 (1995).

    Article  Google Scholar 

  29. R. E. Dutton, N. J. Pagano, and R. Y. Kim, “Modeling the ultimate tensile strength of unidirectional glass-matrix composites,” J. of the American Ceramic Society, 83, No. 1, 166-174 (2000).

    Article  Google Scholar 

  30. Z. **a and W.A. Curtin, “Toughness-to-brittle transitions in ceramic-matrix composites with increasing interfacial shear stress,” Acta Materialia, 48, No. 20, 4879-4892 (2000).

    Article  Google Scholar 

  31. N. Ramakrishnan and V. S. Arunachalam, “Effective elastic moduli of porous ceramic materials,” J. of the American Ceramic Society, 76, No. 11, 2745-2752 (1993).

    Article  Google Scholar 

  32. W. A. Curtin, “In situ fiber strengths in ceramic-matrix composites from fracture mirrors,” J. of the American Ceramic Society, 77, No. 4, 1075-1078 (1994).

    Article  Google Scholar 

  33. A. W. Pryce and P. A. Smith, “Matrix cracking in unidirectional ceramic matrix composites under quasi-static and cyclic loading,” Acta Metallurgica et Materialia, 41, No. 4, 1269-1281 (1993).

    Article  Google Scholar 

  34. D. S. Beyerle, S. M. Spearing, F. W. Zok, and A. G. Evans, “Damage and failure in unidirectional ceramic matrix composites,” J. of the American Ceramic Society, 75, No. 10, 2719-25 (1992).

    Article  Google Scholar 

  35. B. F. Sørensen and J. W. Holmes, “Effect of loading rate on the monotonic tensile behavior of a continuous-fiberreinforced glass-ceramic matrix composite,” J. of the American Ceramic Society, 79, No. 2, 313-320 (1996).

    Article  Google Scholar 

  36. T. Okabe, J. Komotori, M. Shimizu, and N. Takeda, “Mechanical behavior of SiC fiber reinforced brittle-matrix composites,” J. of Material Science, 34, No. 14, 3405-3412 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

This work was sponsored by the Postdoctoral Science Foundation of China (Grant No. 2012M511274) and the Introduction of Talents Scientific Research Foundation of Nan**g University of Aeronautics and Astronautics (Grant No. 56YAH12034). The authors also thank the anonymous reviewers and the editor for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. B. Li.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 49, No. 6, pp. 985-1004, November-December, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L.B., Song, Y.D. & Sun, Y.C. Modeling the Tensile Behavior of Unidirectional C/SiC Ceramic-Matrix Composites. Mech Compos Mater 49, 659–672 (2014). https://doi.org/10.1007/s11029-013-9382-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-013-9382-y

Keywords

Navigation