Log in

Modeling the Tensile Behavior of Cross-Ply C/SiC Ceramic-Matrix Composites

  • Published:
Mechanics of Composite Materials Aims and scope

The tensile behavior of cross-ply C/SiC ceramic-matrix composites (CMCs) at room temperature has been investigated. Under tensile loading, the damage evolution process was observed with an optical microscope. A micromechanical approach was developed to predict the tensile stress–strain curve, which considers the damage mechanisms of transverse multicracking, matrix multicracking, fiber/matrix interface debonding, and fiber fracture. The shear-lag model was used to describe the microstress field of the damaged composite. By combining the shear-lag model with different damage models, the tensile stress–strain curve of cross-ply CMCs corresponding to each damage stage was modeled. The predicted tensile stress–strain curves of cross-ply C/SiC composites agreed with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R. Naslain, “Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview,” Compos. Sci. Technol., 64, No.2, 155-70 (2004).

    Article  Google Scholar 

  2. D. B. Beyerle, S. M. Spearing, and A.G. Evans, “Damage mechanisms and the mechanical properties of a laminated 0/90 ceramic matrix composite,” J. of Am. Ceramic Soc., 75, No.12, 3321-30 (1992).

    Article  Google Scholar 

  3. A. W. Pryce and P. A. Smith, Behavior of unidirectional and crossply ceramic matrix composites under quasi-static tensile loading,” J. Mater. Sci., 27, No.10, 2695-2704 (1992).

    Article  Google Scholar 

  4. P. Karandikar and T. W. Chou, “Characterization and modeling of microcracking and elastic moduli changes in Nicalon/CAS composites,” Compos. Sci. Technol., 46, No.3, 253-263. (1993).

    Article  Google Scholar 

  5. F. A. Opalski and S. Mall, “Tension-compression fatigue behavior of a silicon carbide calcium-aluminosilicate ceramic matrix composites,” J. of Reinforced Plastics and Composites, 13, No.5, 420-438 (1994).

    Article  Google Scholar 

  6. S. W. Wang and A. Parvizi-Majidi, “Experimental characterization of the tensile behavior of Nicalon fiber-reinforced calcium aluminosilicate composites,” J. Mater. Sci., 27, No.20, 5483-5496 (1992).

    Article  Google Scholar 

  7. L. P. Zwada, L. M. Butkus, and G. A. Hartman, “Tensile and fatigue behavior of silicon carbide fiber-reinforced aluminosilicate glass,” J. Am. Ceramic Soc., 74, No.11, 2851-2858 (1991).

    Article  Google Scholar 

  8. G. N. Morscher, M. Singh, D. Kiser, M. Freedman, and R. Bhatt, “Modeling stress-dependent matrix cracking and stress-strain behavior in 2D woven SiC fiber reinforced CVI SiC composites,” Compos. Sci. Technol., 67, No.6, 1009-1017 (2007).

    Article  Google Scholar 

  9. Y. Q. Wang, L. T. Zhang, and L. F. Cheng, “Comparison of tensile behaviors of carbon/ceramic composites with various fiber architectures,” Int. J. of Appl. Ceramic Technol., 10, No.2, 266-275 (2013).

    Article  Google Scholar 

  10. L. B. Li and Y. D. Song, “An approach to estimate interface shear stress of ceramic matrix composites from hysteresis loops,” Appl. Compos. Mater., 17, No.3, 309-328 (2010).

    Article  Google Scholar 

  11. L. B. Li, Y. D. Song, and Z. G. Sun, “Influence of fiber Poisson contraction on matrix cracking development of ceramic matrix composites,” J. of Aerospace Power, 23, No.12, 2196-2201 (2008). (in Chinese)

    Google Scholar 

  12. L. B. Li, Y. D. Song, and Z. G. Sun, “Uniaxial tensile behavior of unidirectional fiber reinforced ceramic matrix composites,” Acta Materiae Compositae Sinica, 25, No.4, 154-160 (2008). (in Chinese)

    Google Scholar 

  13. L. B. Li, Y. D. Song, and Z. G. Sun, “Uniaxial tensile behavior of cross-ply ceramic matrix composites,” Acta Materiae Compositae Sinica, 28, No.1, 179-186 (2011). (in Chinese)

    Article  Google Scholar 

  14. L. B. Li, Y. D. Song, and Y. C. Sun, “Modeling tensile behavior of unidirectional C/SiC ceramic matrix composites,” Mech. Compos. Mater., 49, No.6, 659-672 (2014).

    Article  Google Scholar 

  15. W. A. Curtin, “Stress-strain behavior of brittle matrix composites,” Comprehensive Composite materials, Elsevier Sci. Ltd. 4, 47-76 (2000).

  16. J. Kim and P. K. Liaw, “Fracture behavior of ceramic matrix composites during monotonic and cyclic loadings,” Key Engineering Materials, 345-346, 649-652 (2007).

    Article  Google Scholar 

  17. J. Kim and P. K. Liaw, “Tensile fracture behavior of Nicalon/SiC composites”, Metallurgical and Materials Transcations A, 38A, 2203-2213 (2007).

    Article  Google Scholar 

  18. M. Steen, “Tensile mastercurve of ceramic matrix composites: significance and implications for modeling,” Mater. Sci. and Eng. A, 250, 241-248 (1998).

    Article  Google Scholar 

  19. K. G. Dassios, D. G. Aggelis, E. Z. Kordatos, and T. E. Matikas, “Cyclic loading of a SiC-fiber reinforced ceramic matrix composite reveals damage mechanisms and thermal residual stress state,” Composites: Part A, 44, 105-116 (2013).

    Article  Google Scholar 

  20. W. S. Kuo and T. W. Chou, “Multiple cracking of unidirectional and cross-ply ceramic matrix composites,” J. Am. Ceramic Soc., 78, No.3, 745-755 (1995).

    Article  Google Scholar 

  21. K. W. Garrett and J. E. Bailey, “Multiple transverse fracture in 90o cross-ply laminates of a glass fiber-reinforced polyester,” J. Mater. Sci., 12, No.1, 157-168 (1977).

    Article  Google Scholar 

  22. N. Laws and G. J. Dvorak, “Progressive transverse cracking in composite laminates,” J. Compos. Mater., 22, No.10, 900-916 (1988).

    Article  Google Scholar 

  23. H. Fukunaga, T. W. Chou, P. W. M. Peters, and K. Schulte, “Probabilistic failure strength analysis of graphite/epoxy cross-ply laminates,” J. Compos. Mater., 18, No.4, 339-356 (1984).

    Article  Google Scholar 

  24. I. M. Daniel and J. W. Lee, “The behavior of ceramic matrix fiber composites under longitudinal loading,” Compos. Sci. Technol., 46, No.2, 105-113 (1993).

    Article  Google Scholar 

  25. J. Aveston, G. A. Cooper, and A. Kelly, “Single and multiple fracture,” Properties of Fiber Composites, Conf. on Proc., England: National Physical Laboratory, IPC. 15-26 (1971).

  26. F. W. Zok and S. M. Spearing, “Matrix crack spacing in brittle matrix composites,” Acta Metallurgica et Materialia, 40, No.8, 2033-2043 (1992).

    Article  Google Scholar 

  27. H. Zhu and Y. Weitsman, “The progression of failure mechanisms in unidirectional reinforced ceramic composites,” J. Mech. Phys. of Solids, 42, No.10, 1601-1632 (1994).

    Article  Google Scholar 

  28. J. P. Solti, S. Mall, and D. D. Robertson, “Modeling damage in unidirectional ceramic-matrix composites,” Compos. Sci. Technol., 54, No.1, 55-66 (1995).

    Article  Google Scholar 

  29. W. A. Curtin, “Multiple matrix cracking in brittle matrix composites,” Acta Metallurgica et Materialia, 41, No.5, 1369-1377 (1993).

    Article  Google Scholar 

  30. C. H. Hsueh, “Crack-wake interface debonding criterion for fiber-reinforced ceramic composites,” Acta Materialia, 44, No.6, 2211-2216 (1996).

    Article  Google Scholar 

  31. Y. C. Gao, Y. W. Mai, and B. Cotterell, “Fracture of fiber-reinforced materials”, Zeitschrift für Angewandte Mathematik und Physik (ZAMP), 39, No.4, 550-572 (1988).

    Article  Google Scholar 

  32. Y. J. Sun and R. N. Singh, “The generation of multiple matrix cracking and fiber-matrix interfacial debonding in a glass composite,” Acta Materialia, 46, No.5, 1657-1667 (1998).

    Article  Google Scholar 

  33. M. D. Thouless and A. G. Evans, “Effects of pull-out on the mechanical properties of ceramic matrix composites,” Acta Metallurgica, 36, No.3, 517-522 (1988).

    Article  Google Scholar 

  34. H. C. Cao and M. D. Thouless, “Tensile tests of ceramic-matrix composites: theory and experiment,” J. Am. Ceramic Soc., 73, No.7, 2091-2094 (1990).

    Article  Google Scholar 

  35. M. Sutcu, “Weibull statistics applied to fiber failure in ceramic composites and work of fracture,” Acta Metallurgica, 37, No. 2, 651-661 (1989).

    Article  Google Scholar 

  36. H. R. Schwietert and P. S. Steif, “A theory for the ultimate strength of a brittle-matrix composite,” J. Mech. Phys. of Solids, 38, No.3, 325-343 (1990).

    Article  Google Scholar 

  37. W. A. Curtin, “Theory of mechanical properties of ceramic-matrix composites,” J. Am. Ceramic Soc., 74, No.11, 2837-2845 (1991).

    Article  Google Scholar 

  38. Y. Weitsman and H. Zhu, “Multi-fracture of ceramic composites,” J. Mech. Phys. of Solids, 41, No.2, 351-388 (1993).

    Article  Google Scholar 

  39. F. Hild, J. M. Domergue, F. A. Leckie, and A. G. Evans, “Tensile and flexural ultimate strength of fiber-reinforced ceramic-matrix composites,” Int. J. of Solids and Structures, 31, No.7, 1035-1045 (1994).

    Article  Google Scholar 

  40. W. A. Curtin, B. K. Ahn, and N. Takeda, “Modeling brittle and tough stress−strain behavior in unidirectional ceramic matrix composites,” Acta Materialia, 46, No.10, 3409-3420 (1998).

    Article  Google Scholar 

  41. R. Paar, J.-L.Valles, and R. Danzer, “Influence of fiber properties on the mechanical behavior of unidirectionallyreinforced ceramic matrix composites,” Mater. Sci. and Eng.: A, 250, No. 2, 209-216 (1998).

    Article  Google Scholar 

  42. K. Liao and K. L. Reifsnider, “A tensile strength model for unidirectional fiber-reinforced brittle matrix composite,” Int. J. of Fracture, 106, No. 2, 95-115 (2000).

    Article  Google Scholar 

  43. S. J. Zhou and W. A. Curtin, “Failure of fiber composites: a lattice green function model,” Acta Metallurgica et Materialia, 43, No. 8, 3093-3104 (1995).

    Article  Google Scholar 

  44. R. E. Dutton, N. J. Pagano, and R. Y. Kim, “Modeling the ultimate tensile strength of unidirectional glass-matrix composites,” J. Am. Ceramic Soc., 83, No. 1, 166-174 (2000).

    Article  Google Scholar 

  45. Z. **a and W. A. Curtin, “Toughness-to-brittle transitions in ceramic-matrix composites with increasing interfacial shear stress,” Acta Materialia, 48, No. 20, 4879-4892 (2000).

    Article  Google Scholar 

  46. N. Ramakrishnan and V. S. Arunachalam, “Effective elastic moduli of porous ceramic materials,” J. Am. Ceramic Soc., 76, No. 11, 2745-2752 (1993).

    Article  Google Scholar 

  47. W. A. Curtin, “In situ fiber strengths in ceramic-matrix composites from fracture mirrors,” J. Am. Ceramic Soc., 77, No. 4, 1075-1078 (1994).

    Article  Google Scholar 

  48. D. S. Beyerle, S. M. Spearing, F. W. Zok, and A. G. Evans, “Damage and failure in unidirectional ceramic matrix composites,” J. Am. Ceramic Soc., 75, No. 10, 2719-2725 (1992).

    Article  Google Scholar 

Download references

Acknowledgements

This work was sponsored by the Natural Science Foundation of Jiangsu Province (Grant No. BK20140813), the Postdoctoral Science Foundation of China (Grant No. 2012M511274), and the Introduction of Talents Scientific Research Foundation of Nan**g University of Aeronautics and Astronautics (Grant No. 56YAH12034). The authors also thank the anonymous reviewers and editors for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. B. Li.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 51, No. 3, pp. 505-530 , May-June, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L.B., Song, Y.D. & Sun, Y.C. Modeling the Tensile Behavior of Cross-Ply C/SiC Ceramic-Matrix Composites. Mech Compos Mater 51, 359–376 (2015). https://doi.org/10.1007/s11029-015-9507-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-015-9507-6

Keywords

Navigation