Log in

Suppression of chaos in nonlinear oscillators using a linear vibration absorber

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

This paper proposes a nonfeedback control to suppress the chaotic response of nonlinear oscillators. A linear vibration absorber is used as nonfeedback method, whose key idea is to find conditions under which the nonlinear oscillator response converges to an equilibrium point or stay oscillating around it. Theoretical results show that if the ratio between the natural frequencies of the primary system \((\omega _1)\) and the undamped absorber \((\omega _2)\), that is, \(\omega _r=\frac{\omega _2}{\omega _1}\) is tuned to be equal to the excitation frequency \((\Omega )\), then the chaotic behavior of a nonlinear oscillator is driven to a stable hyperbolic equilibrium point. Numerical results are presented for the Duffing oscillator shown that if \(\omega _r\) is tuned close to excitation frequency, then the chaotic response of the Duffing oscillator is driven to periodic orbits. In the case of damped absorber, \(\omega _r\) to be tuned close to the excitation frequency does not guarantee that the response of the primary system is periodic, it is also necessary to take into account the amplitude of the excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Ashour ON, Nayfeh AH (2003) Experimental and numerical analysis of a nonlinear vibration absorber for the control of plate vibrations. J Vib Control 9:209–234. https://doi.org/10.1177/107754603030748

    Article  MATH  Google Scholar 

  2. Shaw J, Shaw SW, Haddow AG (1989) On the response of the non-linear vibration absorber. Int J Non-Linear Mech 24:281–293. https://doi.org/10.1016/0020-7462(89)90046-2

    Article  MATH  Google Scholar 

  3. Jo H, Yabuno H (2009) Amplitude reduction of primary resonance of nonlinear oscillator by a dynamic vibration absorber using nonlinear coupling. Nonlinear Dyn 55(1–2):67–78. https://doi.org/10.1007/s11071-008-9345-3

    Article  MATH  Google Scholar 

  4. Mikhlin Y, Onizhuk A, Awrejcewicz J (2019) Resonance behavior of the system with a limited power supply having the Mises girder as absorber. Nonlinear Dyn. https://doi.org/10.1007/s11071-019-05125-z

    Article  MATH  Google Scholar 

  5. Piccirillo V, Tusset AM, Balthazar JM (2019) Optimization of dynamic vibration absorbers based on equal-peak theory. Latin Am J Solids Struct 16:1–22. https://doi.org/10.1590/1679-78255285

    Article  Google Scholar 

  6. Habib G, Detroux T, Viguié R, Kerschen G (2015) Nonlinear generalization of Den Hartog’s equal-peak method. Mech Syst Signal Process 52:17–28. https://doi.org/10.1016/j.ymssp.2014.08.009

    Article  Google Scholar 

  7. Felix JLP, Balthazar JM, Rocha RT, Tusset AM, Janzen FC (2018) On vibration mitigation and energy harvesting of a non-ideal system with autoparametric vibration absorber system. Meccanica 53(13):3177–3188. https://doi.org/10.1007/s11012-018-0881-8

    Article  MathSciNet  Google Scholar 

  8. Ott E, Grebogi C, Yorke JA (1990) Controlling chaos. Phys Rev Lett 64:1196–1199. https://doi.org/10.1103/PhysRevLett.64.1196

    Article  MathSciNet  MATH  Google Scholar 

  9. Fronzoni L, Giocondo M, Pettini M (1991) Experimental evidence of suppression of chaos by resonant parametric perturbations. Phys Rev A 43:6483–6487. https://doi.org/10.1103/PhysRevA.43.6483

    Article  Google Scholar 

  10. Farrelly D, Milligan JA (1993) Two-frequency control and suppression of tunneling in the driven double well. Phys Rev E 47:R2225. https://doi.org/10.1103/PhysRevE.47.R2225

    Article  Google Scholar 

  11. Sifakis MK, Elliott SJ (2000) Strategies for the control of chaos in a Duffing–Holmes oscillator. Mech Syst Signal Process 14(6):987–1002. https://doi.org/10.1006/mssp.2000.1317

    Article  Google Scholar 

  12. Pyragas K (1992) Continuous control of chaos by self-controlling feedback. Phys Lett A 170:421–428. https://doi.org/10.1016/0375-9601(92)90745-8

    Article  Google Scholar 

  13. Hunt ER (1991) Stabilizing high-period orbits in a chaotic system. Phys Rev Lett 67:1953–1955. https://doi.org/10.1103/PhysRevLett.67.1953

    Article  Google Scholar 

  14. Sinha SC, Henrichs JT, Ravindra B (2000) A general approach in the design of active controllers for nonlinear systems exhibiting chaos. Int J Bifurc Chaos 10:165–178. https://doi.org/10.1142/S0218127400000104

    Article  MathSciNet  MATH  Google Scholar 

  15. Sharma A, Sinha SC (2019) Control of nonlinear systems exhibiting chaos to desired periodic or quasi-periodic motions. Nonlinear Dyn. https://doi.org/10.1007/s11071-019-04843-8

    Article  MATH  Google Scholar 

  16. Chacón R (2006) Melnikov method approach to control of homoclinic/heteroclinic chaos by weak harmonic excitations. Philos Trans R Soc A Math Phys Eng Sci 184:2335–2351. https://doi.org/10.1098/rsta.2006.1828

    Article  MathSciNet  MATH  Google Scholar 

  17. Lenci S, Rega G (2003) Optimal control of nonregular dynamics in a Duffing oscillator. Nonlinear Dyn 33(1):71–86. https://doi.org/10.1023/A:1025509014101

    Article  MathSciNet  MATH  Google Scholar 

  18. Kapitaniak T, Kocarev LJ, Chua LO (1993) Controlling chaos without feedback and control signals. Int J Bifurc Chaos 3:459–468. https://doi.org/10.1142/S0218127493000362

    Article  MATH  Google Scholar 

  19. Wolf A, Swift JB, Swinney HL, Vastano JA (1995) Determining Lyapunov exponents from a time series. Phys D Nonlinear Phenom 16:285–317. https://doi.org/10.1016/0167-2789(85)90011-9

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinícius Piccirillo.

Ethics declarations

Conflict of interest

The author declares that I have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piccirillo, V. Suppression of chaos in nonlinear oscillators using a linear vibration absorber. Meccanica 56, 255–273 (2021). https://doi.org/10.1007/s11012-020-01283-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-020-01283-2

Keywords

Navigation