Log in

Catalytic effect of bases in impregnation of guanidine nitrate on Poplar (Populus) wood

Flammability and multiple heating rate kinetic study

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Wood, one of the flammable material, was treated with aqueous solution of guanidine nitrate (GUN) and also with small amount of bases like N,N-dimethylformamide, 4-dimethylaminopyridine, pyridine, and triethylamine in the treating solution. These bases catalyze the impregnation of GUN as indicated by increase in mass gain percentage, elemental analysis, and scanning electron microscopy. To study their thermal behavior, dynamic thermogravimetry (TG) and derivative thermogravimetry (DTG) analysis under nitrogen atmosphere have been applied from ambient temperature to 973 K on all samples, at multiple linear heating rates 2.5, 5, 10, and 20 K min−1. Non-isothermal, “model free” iso-conversional multiple heating rate methods, Ozawa–Flynn–Wall (O–F–W) and modified Coats–Redfern are used to calculate activation energy of samples. The activation energy of samples is found in the range 109–208 kJ mol−1. Thermal parameters like overall pyrolysis duration, maximum mass loss rate, corresponding to DTG peak maximum and percentage char yield calculated at 873 K from TG curves are used to appraise the flammability of samples. Also, flammability of samples is determined by reliable methods namely limiting oxygen index and underwriters laboratories 94 (UL 94) test. The aforesaid study indicates that base catalyzed impregnated samples are less flammable than those impregnated with only GUN and untreated ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Horvath AL. Solubility of structurally complicated materials: I wood. J Phys Chem Ref Data. 2006;35:77–92.

    Article  CAS  Google Scholar 

  2. Kandola BK, Horrocks AR, Price D, Coleman GV. Flame retardant treatments on cellulose and their influence on the mechanism of cellulose pyrolysis. Polym Rev. 1996;36:721–94.

    Google Scholar 

  3. Summary fire statistics, United Kingdom, 2006. http://www.communities.gov.uk. 2008.

  4. Gao M, Sun CY, Wang CX. Thermal degradation of wood treated with flame retardants. J Therm Anal Calorim. 2006;85:765–9.

    Article  CAS  Google Scholar 

  5. Blasi CD, Branca C, Galgano A. Thermal and catalytic decomposition of wood impregnated with sulphur-and phosphorous-containing ammonium salts. Polym Degrad Stab. 2008;93:335–46.

    Article  Google Scholar 

  6. Luneva NK, Petrovskaya LI. Performance of intumescent fire retardant for wood. Russ J Appl Chem. 2008;81:704–7.

    Article  CAS  Google Scholar 

  7. Liodakis S, Vorisis D, Agiovlasitis IP. Testing the retardancy effect of various inorganic chemicals on smoldering combustion of Pinus halepenis needles. Thermochem Acta. 2006;444:157–65.

    Article  CAS  Google Scholar 

  8. Kulakov VA, Zhabankov RG, Yurchenko VM. IR spectroscopic study of cellulose treated by guanidine and urea salt solutions. J Appl Spectrosc. 1987;47:797–801.

    Article  Google Scholar 

  9. Gao M, Sun C, Zhu K. Thermal degradation of wood treated with guanidine compounds in air. J Therm Anal Calorim. 2004;75:221–32.

    Article  CAS  Google Scholar 

  10. Gao M, Ling B, Yang SS, Zhao M. Flame retardance of wood treated with guanidine compounds characterized by thermal degradation behavior. J Anal Appl Pyrolysis. 2005;73:151–6.

    Article  CAS  Google Scholar 

  11. Ellis WD, Rowell RM, LeVan SL, Susott RA. Thermal degradation properties of wood reacted with diethylchlorophosphate or phenylphosphonic dichloride as potential flame retardants. Wood Fiber Sci. 1987;19:439–45.

    CAS  Google Scholar 

  12. Flynn JH, Wall LA. General treatment of thermogravimetry of polymers. J Res Natl Bur Stand Sect A Phys Chem. 1966;A70:487–523.

    Google Scholar 

  13. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  14. Brown ME, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham AK, et al. Computational aspects of kinetic analysis. Part A: the ICTAC kinetics project-data, methods and results. Thermochim Acta. 2000;355:125–43.

    Article  CAS  Google Scholar 

  15. Yao F, Wu Q, Lei Y, Guo W, Xu Y. Thermal decomposition kinetics of natural fibers: activation energy with dynamic thernogravimetric analysis. Poly Degrad Stab. 2008;93:90–8.

    Article  CAS  Google Scholar 

  16. Jain RK, Lal K, Bhatnagar HL. Thermal degradation of cellulose and its phosphorylated products in air and nitrogen. J Appl Polym Sci. 1985;30:897–914.

    Article  CAS  Google Scholar 

  17. Antal MJ, Varhegyi G. Cellulose pyrolysis kinetics—the current state knowledge. Ind Eng Chem Res. 1995;34:703–17.

    Article  CAS  Google Scholar 

  18. Liodakis S, Antonopoulos I, Kakardakis T. Evaluating the use of minerals as forest fire retardants. Fire Safety J. 2010;45:98–105.

    Article  CAS  Google Scholar 

  19. Liodakis S, Kakardakis T, Tzortzakou S, Tsapara V. How to measure the particle ignitability of forest species by TG and LOI. Thermochem Acta. 2008;477:16–20.

    Article  CAS  Google Scholar 

  20. Cavallaro G, Donato DI, Lazzara G, Milioto S. A comparative thermogravimetric study of waterlogged archaeological and sound woods. J Therm Anal Calorim. 2011;104:451–7.

    Article  CAS  Google Scholar 

  21. Dahiya JB, Kumar K, Muller-Hagedorn M, Bockhorn H. Kinetics of isothermal and non-isothermal degradation of cellulose: model-based and model-free methods. Polym Int. 2008;57:722–9.

    Article  CAS  Google Scholar 

  22. Cabrales L, Abidi N. On the thermal degradation of cellulose in cotton fibers. J Therm Anal Calorim. 2010;102:485–91.

    Article  CAS  Google Scholar 

  23. Corradini E, Teixeira EM, Paladin PD, Agnelli JA, Silva ORRF, Mattoso LHC. Thermal stability and degradation kinetic study of white and colored cotton fibers by thermogravimetric analysis. J Therm Anal Calorim. 2009;97:415–9.

    Article  CAS  Google Scholar 

  24. Lin YC, Cho J, Tompsett GA, Westmoreland PR, Huber GW. Kinetics and mechanism of cellulose pyrolysis. J Phys Chem C. 2009;113:20097–107.

    Article  CAS  Google Scholar 

  25. Arora S, Kumar M, Dubey GP. Thermal decomposition kinetics of rice husk: activation energy with dynamic thermogravimetric analysis. J Energy Inst. 2009;82:138–43.

    Article  CAS  Google Scholar 

  26. Arora S, Bagoria R, Kumar M. Effect of alpha-tocopherol (vitamin E) on the thermal degradation behaviour of edible oils. J Therm Anal Calorim. 2010;102:375–81.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Mahesh Kumar is thankful to Council of Scientific and Industrial Research, New Delhi, India for providing senior research fellowship and Mahender Kumar is grateful to Kurukshetra University, Kurukshetra for awarding university research scholarship. We are also thankful to Vikas Kumar (BARC, Mumbai) and Vinod Kumar (IIT, Delhi) for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjiv Arora.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arora, S., Kumar, M. & Kumar, M. Catalytic effect of bases in impregnation of guanidine nitrate on Poplar (Populus) wood. J Therm Anal Calorim 107, 1277–1286 (2012). https://doi.org/10.1007/s10973-011-1779-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1779-z

Keywords

Navigation