Log in

A comparative thermogravimetric study of waterlogged archaeological and sound woods

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Waterlogged archaeological woods Pinus pinaster and Fagus sylvatica L. were analyzed by using TG technique. Degradation processes ascribable to the holocellulose decay were evidenced at nearly the same temperature for sound and archaeological samples. The residual matters at 600 and 900 °C of the sound woods are much lower than those of archaeological waterlogged woods in agreement with the presence of inorganic materials encapsulated during the burial into the marine environment. It was proposed a new protocol to rapidly calculate the maximum water content parameter, which is related to the wood degradation state. TG experiments at variable heating rates were performed to obtain kinetic parameters for the degradation process. The Flynn–Wall–Ozawa and Friedman approaches allowed us to calculate the activation energy, which is significantly different for the sound and the archaeological woods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jordan BA. Site characteristics impacting the survival of historic waterlogged wood: a review. Int Biodeterior Biodegrad. 2001;47:47–54.

    Article  CAS  Google Scholar 

  2. Giachi G, Capretti C, Macchioni N, Pizzo B, Donato ID. A methodological approach in the evaluation of efficacy of treatment for the dimensional stabilization of waterlogged archaeological wood. J Cult Herit. 2010;11:91–101.

    Article  Google Scholar 

  3. Van Bergen PF, Imogen P, Ogilvie TMA, Caple C, Evershed RP. Evidence for demethylation of syringyl moieties in archaeological wood using pyrolysis-gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom. 2000;14:71–9.

    Article  Google Scholar 

  4. Popescu CM, Dobele G, Rossinskaja G, Dizhbite T, Vasile C. Degradation of lime wood painting supports evaluation of changes in the structure of aged lime wood by different physico-chemical methods. J Anal Appl Pyrolysis. 2007;79:71–7.

    Article  CAS  Google Scholar 

  5. Bardet M, Foray MF. Trân QK high-resolution solid-state CPMAS NMR study of archaeological woods. Anal Chem. 2002;74:4386–90.

    Article  CAS  Google Scholar 

  6. Salanti A, Zoia L, Tolppa EL, Giachi G, Orlandi M. Characterization of waterlogged wood by NMR and GPC techniques. Microchem J. 2010;95:345–52.

    Article  CAS  Google Scholar 

  7. Colombini MP, Lucejkoa JJ, Modugno F, Orlandi M, Tolppa EL, Zoia L. A multi-analytical study of degradation of lignin in archaeological waterlogged wood. Talanta. 2009;80:61–70.

    Article  CAS  Google Scholar 

  8. Franceschi E, Cascone I, Nole D. Thermal XRD and spectrophotometric study on artificially degraded woods. J Therm Anal Calorim. 2008;91:119–25.

    Article  CAS  Google Scholar 

  9. Donato DI, Lazzara G, Milioto S. Thermogravimetric analysis: a tool to evaluate the ability mixtures in consolidating waterlogged archaeological woods. J Therm Anal Calorim. 2010;101:1085–91.

    Article  CAS  Google Scholar 

  10. Campanella L, Tomassetti M, Tomellini R. Thermoanalysis of ancient, fresh and waterlogged woods. J Therm Anal Calorim. 1991;37:1923–32.

    Article  CAS  Google Scholar 

  11. Streibel T, Geißler R, Saraji-Bozorgzad M, Sklorz M, Kaisersberger E, Denner T, Zimmermann R. Evolved gas analysis (EGA) in TG and DSC with single photon ionisation mass spectrometry (SPI-MS): molecular organic signatures from pyrolysis of soft and hard wood, coal, crude oil and ABS polymer. J Therm Anal Calorim. 2009;96:795–804.

    Article  CAS  Google Scholar 

  12. Florian E (1989) Scope and history of archaeological wood Archaeological Wood, Ed American Chemical Society, Washington, DC 1990, p 8

  13. Hedges JI. The chemistry of archaeological wood. In: Rowell RM, Barbour RJ, editors. Archaeological wood properties chemistry and preservation. Advances in Chemistry Series 225. Washington: American Chemical Society; 1990. p. 137

  14. Wilkin RT, Barnes HL. Formation processes of framboidal pyrite. Geochim Cosmochim Acta. 1997;61:323–39.

    Article  CAS  Google Scholar 

  15. Fors Y, Nilsson T, Risberg ED, Sandstrom M. Torssander P Sulfur accumulation in pinewood (Pinus sylvestris) induced by bacteria in a simulated seabed environment: implications for marine archaeological wood and fossil fuels. Int Biodeter Biodegradation. 2008;62:336–47.

    Article  CAS  Google Scholar 

  16. Kim UJ, Eom SH, Wada M. Thermal decomposition of native cellulose: influence on crystallite size. Polym Degrad Stab. 2010;95:778–81.

    Article  CAS  Google Scholar 

  17. Li J, Lib B, Zhang X. Comparative studies of thermal degradation between larch lignin and manchurian ash lignin. Polym Degrad Stab. 2002;78:279–85.

    Article  CAS  Google Scholar 

  18. Merela M, Oven P, Sersa I, Mikac U. A single point NMR method for instantaneous determination of the moisture content of wood. Holzforschung. 2009;63:348–51.

    Article  CAS  Google Scholar 

  19. Wang SX, Tan ZC, Li YS, Sun LX, Li Y. A kinetic analysis of thermal decomposition of polyaniline/ZrO2 composite. J Therm Anal Calorim. 2008;92:483–7.

    Article  CAS  Google Scholar 

  20. Yu-Hsiang H, Chuh-Yung C, Cheng-Chien W. Viscoelastic properties and thermal degradation kinetics of silica/PMMA nanocomposites. Polym Degrad Stab. 2004;84:545–53.

    Article  Google Scholar 

  21. Pielichowski K, Flejtuch K. Non-oxidative thermal degradation of poly(ethylene oxide): kinetic and thermoanalytical study. J Anal Appl Pyrolysis. 2005;73:131–8.

    Article  CAS  Google Scholar 

  22. Budrugeac P, Segal E, Pérez-Maqueda LA, Criado JM. The use of the IKP method for evaluating the kinetic parameters and the conversion function of the thermal dehydrochlorination of PVC from non-isothermal data. Polym Degrad Stab. 2004;84:311–20.

    Article  CAS  Google Scholar 

  23. Yao F, Wu Q, Lei Y, Guo W, Xu Y. Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym Degrad Stab. 2008;93:90–8.

    Article  CAS  Google Scholar 

  24. Criado JM, Sanchez-Jimenez PE, Perez-Maqueda LA. Critical study of the isoconversional methods of kinetic analysis. J Therm Anal Calorim. 2008;92:199–203.

    Article  CAS  Google Scholar 

  25. Jiang G, Nowakowski DJ, Bridgwater AV. A systematic study of the kinetics of lignin pyrolysis. Thermochim Acta. 2010;498:61–6.

    Article  CAS  Google Scholar 

  26. Donato ID, Armata N. Physical properties of waterlogged wood measurements with Accupyc 1330, Helium picnometer. In: Straetkvern K, Huisman DJ, editors. Proceedings of the 10th ICOM Group on wet organic archaeologic materials conference, Amsterdam. Amersfoort: Nederlandse Archeologische Rapporten, Drukkerij Stampij 2007;37:79–88.

Download references

Acknowledgements

The work was financially supported by the University of Palermo. We thank the “Fondazione Banco di Sicilia” which cofinanced the TGA Q5000 IR apparatus (Convenzione PR 4.b/08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Lazzara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavallaro, G., Donato, D.I., Lazzara, G. et al. A comparative thermogravimetric study of waterlogged archaeological and sound woods. J Therm Anal Calorim 104, 451–457 (2011). https://doi.org/10.1007/s10973-010-1229-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-1229-3

Keywords

Navigation