Log in

Prompt gamma neutron activation analysis (PGAA): recent developments and applications

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Prompt gamma neutron activation analysis has become an important part of the analytical toolkit, practiced at several research reactors worldwide. An extensive review of the physics, engineering, and applications of the technique was published in 2004: the present work gives an overview and survey of the literature in the succeeding dozen years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Greenberg RR, Bode P, De Nadai Fernandes EA (2011) Neutron activation analysis: a primary method of measurement. Spectrochim Acta B 66:193–241. doi:10.1016/j.sab.2010.12.011

    Article  CAS  Google Scholar 

  2. Freitas MC, Révay Z, Szentmiklósi L, Dionísio I, Dung HM, Pacheco AMG (2008) Different methodologies in neutron activation to approach the full analysis of environmental and nutritional samples. J Radioanal Nucl Chem 278(2):381–386. doi:10.1007/s10967-008-0804-6

    Article  CAS  Google Scholar 

  3. Isenhour TL, Morrison GH (1966) Modulation technique for neutron capture gamma-ray measurements in activation analysis. Anal Chem 38:162–167

    Article  CAS  Google Scholar 

  4. Isenhour TL, Morrison GH (1966) Determination of Boron by thermal neutron activation analysis using a modulation technique. Anal Chem 38:167–169

    Article  CAS  Google Scholar 

  5. Gladney ES, Curtis DB, Jurney ET (1978) Multielement analysis of major and minor elements by thermal neutron induced capture gamma-ray spectrometry. J Radioanal Chem 46:299–308

    Article  CAS  Google Scholar 

  6. Failey MP, Anderson DL, Zoller WH, Gordon GE, Lindstrom RM (1979) Neutron-capture prompt gamma-ray activation analysis for multi-element determination in complex samples. Anal Chem 51:2209–2221

    Article  CAS  Google Scholar 

  7. Hanna AG, Brugger RM, Glascock MD (1981) The prompt gamma neutron activation analysis facility at MURR. Nucl Instrum Methods 188:619–627

    Article  CAS  Google Scholar 

  8. Molnár G, Belgya T, Dabolczi L, Fazekas B, Révay Z, Veres Á, Bikit I, Kiss Z, Östör J (1997) The new prompt gamma activation analysis facility at Budapest. J Radioanal Nucl Chem 215:111–115

    Article  Google Scholar 

  9. Comar D, Crouzel C, Chasteland M, Riviere R, Kellershohn C (1969) The use of neutron-capture gamma radiation for the analysis of biological samples. Nucl Appl 6(4):344–351

    Article  CAS  Google Scholar 

  10. Henkelmann R, Born HJ (1973) Analytical use of neutron-capture gamma-rays. J Radioanal Chem 16:473–481

    Article  CAS  Google Scholar 

  11. Kerr SA, Oliver RA, Vittoz P, Vivier G, Hoyler F, MacMahon TD, Ward NI (1987) Elemental concentrations in geochemical reference samples by neutron capture prompt gamma-ray spectroscopy. J Radioanal Nucl Chem 113:249–258

    Article  CAS  Google Scholar 

  12. Lindstrom RM, Zeisler R, Rossbach M (1987) Activation analysis opportunities using cold neutron beams. J Radioanal Nucl Chem 112:321–330

    Article  CAS  Google Scholar 

  13. Lindstrom RM, Zeisler R, Vincent DH, Greenberg RR, Stone CA, Mackey EA, Anderson DL, Clark DD (1993) Neutron capture prompt gamma-ray activation analysis at the NIST cold neutron research facility. J Radioanal Nucl Chem 167(1):121–126

    Article  Google Scholar 

  14. Molnár G, Révay Z, Veres Á, Simonits A, Rausch H (1993) Cold neutron facility for prompt gamma neutron activation analysis. J Radioanal Nucl Chem 167:133–137

    Article  Google Scholar 

  15. Yonezawa C, Haji Wood AK, Hoshi M, Ito Y, Tachikawa E (1993) The characteristics of the prompt gamma-ray analyzing system at the neutron beam guides of JRR-3M. Nucl Instrum Methods A329:207–216

    Article  CAS  Google Scholar 

  16. Ünlü K, Ríos-Martínez C, Wehring BW (1995) Prompt gamma activation analysis with the Texas cold neutron source. J Radioanal Nucl Chem 193:145–154

    Article  Google Scholar 

  17. IAEA (2012) Neutron generators for analytical purposes. IAEA Radiation Technology Reports Series IAEA, Vienna

    Google Scholar 

  18. Meric I, Johansen GA, Holstad MB, Mattingly J, Gardner RP (2012) On the treatment of ill-conditioned cases in the Monte Carlo library least-squares approach for inverse radiation analyzers. Meas Sci Technol 23(5):055603. doi:10.1088/0957-0233/23/5/055603

    Article  CAS  Google Scholar 

  19. Lim CS, Sowerby BD (2005) On-line bulk elemental analysis in the resource industries using neutron-gamma techniques. J Radioanal Nucl Chem 264(1):15–19. doi:10.1007/s10967-005-0670-4

    Article  CAS  Google Scholar 

  20. Alfassi ZB, Chung C (eds) (1995) Prompt gamma neutron activation analysis. CRC Press, Boca Raton

    Google Scholar 

  21. Molnár GL, Révay Z (eds) (2004) Handbook of prompt gamma activation analysis with neutron beams. Kluwer, Dordrecht

    Google Scholar 

  22. Choi HD, Firestone RB, Lindstrom RM, Molnár GL, Mughabghab SF, Paviotti-Corcuera R, Révay Z, Trkov A, Zerkin V, Zhou C (2007) Database of prompt gamma rays from slow neutron capture for elemental analysis (STI/PUB/1263). IAEA, Vienna

    Google Scholar 

  23. Firestone RB, Abusaleem K, Basunia MS, Bečvář F, Belgya T, Bernstein LA, Choi HD, Escher JE, Genreith C, Hurst AM, Krtička M, Renne PR, Révay Z, Rogers AM, Rossbach M, Siem S, Sleaford B, Summers NC, Szentmiklósi L, van Bibber K, Wiedeking M (2014) EGAF: measurement and Analysis of gamma-ray cross sections. Nucl Data Sheets 119:79–87. doi:10.1016/j.nds.2014.08.024

    Article  CAS  Google Scholar 

  24. Révay Z (2009) Determining elemental composition using prompt γ activation analysis. Anal Chem 81:6851–6859

    Article  CAS  Google Scholar 

  25. Révay Z (2009) In-beam prompt γ-activation analysis. In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, Chichester. doi:10.1002/9780470027318.a9131

    Google Scholar 

  26. Révay Z, Lindstrom RM, Mackey EA, Belgya T (2011) Neutron-induced prompt gamma activation analysis (PGAA). In: Vertes A, Nagy S, Klencsár Z, Lovas RG, Rösch F (eds) Handbook of nuclear chemistry, vol 3, 2nd edn. Springer, Dordrecht, pp 1619–1672. doi:10.1007/978-1-4419-0720-2_31

    Chapter  Google Scholar 

  27. Goncalves-Carralves MLS, Gadan MA, Bortolussi S, Pinto J, Ojeda J, Langan S, Quintana J, Miller ME (2011) Development of a prompt gamma neutron activation analysis facility for B-10 concentration measurements at RA-3: design stage. Appl Radiat Isot 69(12):1928–1931. doi:10.1016/j.apradiso.2011.02.026

    Article  CAS  Google Scholar 

  28. Guerra BT, Jacimovic R, Menezes MABC, Leal AS (2013) Proposed design for the PGAA facility at the TRIGA IPR-R1 research reactor. SpringerPlus 2:597. doi:10.1186/2193-1801-2-597

    Article  CAS  Google Scholar 

  29. Zhang L, Ni B, Tian W, Huang D, Zhang G, Liu C, Wang P, Liu L, Li D (2005) Status and development of prompt γ-ray neutron activation analysis. At Energy Sci Technol 39(3):282–288 (in Chinese)

    CAS  Google Scholar 

  30. Zhang ZZ, Chong YZ, Chen XR, ** CJ, Yang LJ, Liu T (2015) PGNAA system preliminary design and measurement of In-Hospital Neutron Irradiator for boron concentration measurement. Appl Radiat Isot 106:161–165. doi:10.1016/j.apradiso.2015.07.049

    Article  CAS  Google Scholar 

  31. Sun HC, Ni BF, **ao CJ, Zhang GY, Liu CX, Huang JF (2011) Design of a prompt-gamma neutron activation analysis system on China Advanced Research Reactor. Nucl Sci Tech 22(5):287–292

    CAS  Google Scholar 

  32. Ni B, **ao C, Huang D, Sun H, Zhang G, Liu C, Wang P, Zhang H, Tian W (2012) A brief introduction to NAA facilities of China Advance Research Reactor at CIAE. J Radioanal Nucl Chem 291(2):313–319. doi:10.1007/s10967-011-1252-2

    Article  CAS  Google Scholar 

  33. Crittin M, Kern J, Schenker J-L (2000) The new prompt gamma-ray activation facility at the Paul Scherrer Institute, Switzerland. Nucl Instrum Methods A449:221–236

    Article  Google Scholar 

  34. Baechler S, Kudějová P, Jolie J, Schenker J-L (2003) The k0-method in cold-neutron prompt gamma-ray activation analysis. J Radioanal Nucl Chem 256:239–245

    Article  CAS  Google Scholar 

  35. Kudějová P, Materna T, Jolie J, Türler A, Wilk P, Baechler S, Kasztovszky Z, Révay Z, Belgya T (2005) On the construction of a new instrument for cold-neutron prompt gamma-ray activation analysis at the FRM-II. J Radioanal Nucl Chem 265:221–227. doi:10.1007/s10967-005-0812-8

    Article  CAS  Google Scholar 

  36. Kudějová P, Meierhofer G, Zeitelhack K, Jolie J, Schulze R, Türler A, Materna T (2008) The new PGAA and PGAI facility at the research reactor FRM II in Garching near Munich. J Radioanal Nucl Chem 278(3):691–695

    Article  CAS  Google Scholar 

  37. Canella L, Kudějová P, Schulze R, Türler A, Jolie J (2011) Characterisation and optimisation of the new prompt gamma-ray activation analysis (PGAA) facility at FRM II. Nucl Instrum Methods 636(1):108–113. doi:10.1016/j.nima.2011.01.126

    Article  CAS  Google Scholar 

  38. Révay Z, Kudějová P, Kleszcz K, Söllradl S, Genreith C (2015) In-beam activation analysis facility at MLZ, Garching. Nucl Instrum Methods A799:114–123. doi:10.1016/j.nima.2015.07.063

    Article  CAS  Google Scholar 

  39. Söllradl S, Muhlbauer MJ, Kudějová P, Türler A (2015) Development and test of a neutron imaging setup at the PGAA instrument at FRM II. In: Lehmann EH, Kaestner AP, Mannes D (eds) Proceedings of the 10th world conference on neutron radiography. Physics Procedia, vol 69, pp 130–137. doi:10.1016/j.phpro.2015.07.019

  40. Rossbach M, Randriamalala T, Mauerhofer E, Révay Z, Söllradl S (2016) Prompt and delayed inelastic scattering reactions from fission neutron irradiation—first results of FaNGaS. J Radioanal Nucl Chem 309(1):149–154. doi:10.1007/s10967-015-4665-5

    Article  CAS  Google Scholar 

  41. Rossbach M, Mauerhofer E, Révay Z (2016) Fast neutrons for PGAA applications. Paper presented at the International Conference on Radioanalytical and Nuclear Chemistry, Budapest, 10–15 Apr 2016

  42. Szentmiklósi L, Kasztovszky Z, Belgya T, Révay Z, Kis Z, Maróti B, Gméling K, Szilágyi V (2016) Fifteen years of success: user access programs at the Budapest prompt-gamma activation analysis laboratory. J Radioanal Nucl Chem 309(1):71–77. doi:10.1007/s10967-016-4774-9

    Article  CAS  Google Scholar 

  43. Molnár GL, Révay Z, Belgya T (2002) Wide energy range efficiency calibration method for Ge detectors. Nucl Instrum Methods A489:140–159

    Article  Google Scholar 

  44. Révay Z, Firestone RB, Belgya T, Molnár GL (2004) Prompt gamma-ray spectrum catalog. In: Molnár GL (ed) Handbook of prompt gamma activation analysis with neutron beams. Kluwer, Dordrecht, pp 173–364

    Chapter  Google Scholar 

  45. Révay Z, Belgya T, Molnár GL (2005) Application of Hypermet-PC in PGAA. J Radioanal Nucl Chem 265(2):261–265

    Article  CAS  Google Scholar 

  46. Szentmiklósi L, Berlizov AN (2009) Characterization of the Budapest prompt-gamma spectrometer by Monte Carlo simulations. Nucl Instrum Methods A612(1):122–126. doi:10.1016/j.nima.2009.09.127

    Article  CAS  Google Scholar 

  47. Belgya T, Kis Z, Szentmiklósi L (2014) Neutron flux characterization of the cold beam PGAA-NIPS facility at the Budapest research reactor. Nucl Data Sheets 119(May):419–421

    Article  CAS  Google Scholar 

  48. Szentmiklósi L, Párkányi D, Sziklai-László I (2016) Upgrade of the Budapest neutron activation analysis laboratory. J Radioanal Nucl Chem 309(1):91–99. doi:10.1007/s10967-016-4776-7

    Article  CAS  Google Scholar 

  49. Maróti B, Szentmiklósi L, Belgya T (2016) Comparison of low-energy and coaxial HPGe detectors for prompt gamma activation analysis of metallic samples. J Radioanal Nucl Chem 310(2):743–749. doi:10.1007/s10967-016-4822-5

    Article  CAS  Google Scholar 

  50. Belgya T, Kis Z, Szentmiklósi L, Kasztovszky Z, Festa G, Andreanelli L, De Pascale M, Pietropaolo A, Kudějová P, Schulze R, Materna T, the Ancient Charm C (2008) A new PGAI-NT setup at the NIPS facility of the Budapest Research Reactor. J Radioanal Nucl Chem 278(3):713–718

    Article  CAS  Google Scholar 

  51. Szentmiklósi L, Kis Z, Belgya T, Berlizov AN (2013) On the design and installation of a Compton–suppressed HPGe spectrometer at the Budapest neutron-induced prompt gamma spectroscopy (NIPS) facility. J Radioanal Nucl Chem 298:1605–1611

    Article  CAS  Google Scholar 

  52. Kis Z, Szentmiklósi L, Belgya T (2015) NIPS–NORMA station—a combined facility for neutron-based nondestructive element analysis and imaging at the Budapest Neutron Centre. Nucl Instrum Methods A779:116–123. doi:10.1016/j.nima.2015.01.047

    Article  CAS  Google Scholar 

  53. Tian KV, Festa G, Ls Szentmiklósi, Br Maróti, Arcidiacono L, Laganà G, Andreani C, Licoccia S, Senesi R, Cozza P (2017) Compositional studies of functional orthodontic archwires using prompt-gamma activation analysis at a pulsed neutron source vs. a cold neutron source. J Anal At Spectrom 32:1420–1427

    Article  CAS  Google Scholar 

  54. Acharya R, Nair A, Sudarshan K, Goswami A, Reddy A (2008) Development and applications of k(0) based NAA and prompt gamma-ray NAA methods at BARC. J Radioanal Nucl Chem 278(3):617–620. doi:10.1007/s10967-008-1203-8

    Article  CAS  Google Scholar 

  55. Toh Y, Oshima M, Furutaka K, Kimura A, Koizumi M, Hatsukawa Y, Goto J (2008) Development of a neutron beam line and detector system for multiple prompt gamma-ray analysis. J Radioanal Nucl Chem 278(3):703–706

    Article  CAS  Google Scholar 

  56. Toh Y, Ebihara M, Kimura A, Nakamura S, Harada H, Hara KY, Koizumi M, Kitatani F, Furutaka K (2014) Synergistic effect of combining two nondestructive analytical methods for multielemental analysis. Anal Chem 86(24):12030–12036. doi:10.1021/ac502632w

    Article  CAS  Google Scholar 

  57. Park CS, Sun GM, Byun SH, Choi HD (2005) Progress of prompt gamma activation analysis in Korea. J Radioanal Nucl Chem 265(2):283–286

    Article  CAS  Google Scholar 

  58. Amsil H, Embarch K, Bounouira H, Bounakhla M, El Younoussi C, Boulaich Y, El Bakkari B, Ryach D, Chetaine A, Bouzekri N, Viererbl L, Lahodová Z (2015) Characterization of Moroccan Triga Mark 2 reactor neutron beams using neutron activation detectors and SAND II code. Paper presented at the International Conference on Research Reactors: Safe Management and Effective Utilization, Vienna, Nov 2015

  59. Barbos D, Paunoiu C, Mladin M, Cosma C (2008) The prompt gamma neutron activation analysis facility at ICN—Pitesti. In: Cincu E, Manea I (eds) Nuclear proficiency testing. AIP conference proceedings, vol 1036, pp 180–185

  60. Khokhlov VF, Zaitsev KN, Beliayev VN, Kulakov VN, Lipengolts AA, Portnov AA (2009) Prompt gamma neutron activation analysis of B-10 and Gd in biological samples at the MEPhI reactor. Appl Radiat Isot 67(7–8 supplement):S251–S253. doi:10.1016/j.apradiso.2009.03.082

    Article  CAS  Google Scholar 

  61. Laoharojanaphand S, Dharmavanij W, Busamongkol A, Pareepart R, Wimolwattanapun W, Chantarachot W (2008) Research and development on activation analysis at the Thailand Institute of Nuclear Technology. J Radioanal Nucl Chem 278(3):675–679. doi:10.1007/s10967-008-1503-z

    Article  CAS  Google Scholar 

  62. Sangaroon S, Ratanatongchai W, Khaweerat S, Picha R, Channuie J (2016) The MCNP simulation of a PGAA system at TRR-1/M1. Paper presented at the international conference on radioanalytical and nuclear chemistry, Budapest, 10–15 Apr 2016

  63. Ünlü K, Ríos-Martínez C (2005) Cold neutron PGAA facility developments at university research reactors in the USA. J Radioanal Nucl Chem 265(2):329–338

    Article  CAS  Google Scholar 

  64. Paul RL, Şahin D, Cook JC, Brocker C, Lindstrom RM, O’Kelly DJ (2015) NGD cold-neutron prompt gamma-ray activation analysis spectrometer at NIST. J Radioanal Nucl Chem 304(1):189–193. doi:10.1007/s10967-014-3635-7

    Article  CAS  Google Scholar 

  65. Turkoglu D, Downing RG, Chen W, Şahin D, Cook J (2017) A 3He beam stop for minimizing gamma-ray and fast-neutron background. J Radioanal Nucl Chem 311(2):1243–1249. doi:10.1007/s10967-016-4954-7

    Article  CAS  Google Scholar 

  66. Turkoglu D, Chen-Mayer H, Paul R, Zeisler R (2017) Assessment of PGAA capability for low-level measurements of H in Ti alloy. Anal Methods. doi:10.1039/C7AN01308F

  67. Mackey EA, Anderson DL, Liposky PJ, Lindstrom RM, Chen-Mayer H, Lamaze GP (2004) New thermal neutron prompt gamma-ray activation analysis instrument at the National Institute of Standards and Technology Center for Neutron Research. Nucl Instrum Methods B226(3):426–440

    Article  CAS  Google Scholar 

  68. Mackey EA, Anderson DL, Chen-Mayer H, Downing RG, Greenberg RR, Lamaze GP, Lindstrom RM, Mildner DFR, Paul RL (1996) Use of neutron beams for chemical analysis at NIST. J Radioanal Nucl Chem 203(2):413–427

    Article  CAS  Google Scholar 

  69. Mackey EA (1994) Effects of target temperature on analytical sensitivities of cold neutron capture prompt γ-ray activation analysis. Biol Trace Elem Res 43–45:103–108

    Article  Google Scholar 

  70. Turkoglu D, Burke J, Lewandowski R, Cao LR (2012) Characterization of a new external neutron beam facility at the Ohio State University. J Radioanal Nucl Chem 291(2):321–327. doi:10.1007/s10967-011-1289-2

    Article  CAS  Google Scholar 

  71. Robinson JA, Hartman MR, Reese SR (2010) Design, construction and characterization of a prompt gamma activation analysis facility at the Oregon State University TRIGA reactor. J Radioanal Nucl Chem 283(2):359–369. doi:10.1007/s10967-009-0358-2

    Article  CAS  Google Scholar 

  72. Révay Z, Harrison RK, Alvarez E, Biegalski SR, Landsberger S (2007) Construction and characterization of the redesigned PGAA facility at The University of Texas at Austin. Nucl Instrum Methods A577(3):611–618

    Article  CAS  Google Scholar 

  73. Révay Z (2005) Characterization of the wavelength spectrum of guided neutron beams. J Radioanal Nucl Chem 264(2):283–287

    Article  CAS  Google Scholar 

  74. Biegalski SR, Green TC, Alvarez E, Aghara S (2007) Background characterization of The University of Texas PGAA facility. J Radioanal Nucl Chem 271(2):413–417. doi:10.1007/s10967-007-0224-z

    Article  CAS  Google Scholar 

  75. Belgya T, Révay Z, Molnár GL (2005) Gamma-ray background at the Budapest PGAA facility. J Radioanal Nucl Chem 265(2):181–191

    Article  CAS  Google Scholar 

  76. Zhao L, Robinson L (2009) A comparison between cold and thermal neutron prompt gamma activation analysis in the determination of carbon, nitrogen, and phosphorus in cattail. J Radioanal Nucl Chem 282(1):151. doi:10.1007/s10967-009-0309-y

    Article  CAS  Google Scholar 

  77. Robinson L, Zhao L (2009) Effects of sample and spectrum characteristics on cold and thermal neutron prompt gamma activation analysis in environmental studies of plants. J Radioanal Nucl Chem 282(1):199. doi:10.1007/s10967-009-0310-5

    Article  CAS  Google Scholar 

  78. Hoang SMT, Sun GM, Moon JH, Chung YS, Park BG (2013) Optimization of HANARO cold neutron induced prompt gamma activation analysis system by using Monte Carlo code. J Radioanal Nucl Chem 296(2):967–973. doi:10.1007/s10967-012-2156-5

    Article  CAS  Google Scholar 

  79. Beasley DG, Fernandes AC, Santos JP, Ramos AR, Marques JG, King A (2015) Characterisation of the epithermal neutron irradiation facility at the Portuguese research reactor using MCNP. Appl Radiat Isot 99:186–192. doi:10.1016/j.apradiso.2015.03.005

    Article  CAS  Google Scholar 

  80. Szakal A, Czifrus S, Marko M, Fuzi J, Rosta L, Cser L (2011) Optimization of focusing supermirror neutron guides for low gamma-background. Nucl Instrum Methods A 634:S130–S133. doi:10.1016/j.nima.2010.06.007

    Article  CAS  Google Scholar 

  81. Grafe JL, Chettle DR, McNeill FE (2015) In vivo detection of samarium by prompt gamma neutron activation analysis: a comparison between experiment and Monte-Carlo simulation. J Anal At Spectrom 30(12):2441–2448. doi:10.1039/c5ja00352k

    Article  CAS  Google Scholar 

  82. Nicol T, Carasco C, Perot B, Ma JL, Payan E, Mauerhofer E, Havenith A, Collot J (2016) Quantitative comparison between PGNAA measurements and MCNPX simulations. J Radioanal Nucl Chem 308(2):671–677. doi:10.1007/s10967-015-4451-4

    Article  CAS  Google Scholar 

  83. Hoang SMT, Sun GM, Kim J, Baek H (2016) Monte Carlo ray-tracing simulations for cold neutron beam guides of CONAS. J Radioanal Nucl Chem 309(1):207–218. doi:10.1007/s10967-016-4794-5

    Article  CAS  Google Scholar 

  84. Perego RC, Blaauw M (2005) Incoherent neutron-scattering determination of hydrogen content: Theory and modeling. J Appl Phys 97(12):123533

    Article  CAS  Google Scholar 

  85. Mowlavi AA, Yazdic MHH (2011) Monte Carlo simulation of pulse pile-up effect in gamma spectrum of a PGNAA system. Nucl Instrum Methods A660(1):104–107

    Article  CAS  Google Scholar 

  86. Szentmiklósi L, Belgya T (2016) GEANT4 simulations of the Budapest Compton-suppressed PGAA spectrometer. Paper presented at the international conference on radioanalytical and nuclear chemistry, Budapest, 10–15 Apr 2016

  87. Yamada S, Shinohara T, Sasao H, Oku T, Suzuki JI, Matsue H, Shimizu HM (2006) Development of a multichannel parabolic guide for thermal neutron beam focusing. Phys B Condens Matter 385–86:1243–1246

    Article  CAS  Google Scholar 

  88. Cook JC, Barker JG, Rowe JM, Williams RE, Gagnon C, Lindstrom RM, Ibberson RM, Neumann DA (2015) Experimental characterization of the Advanced Liquid Hydrogen Cold Neutron Source spectrum of the NBSR reactor at the NIST Center for Neutron Research. Nucl Instrum Methods A792:15–27

    Article  CAS  Google Scholar 

  89. Révay Z, Belgya T, Szentmiklósi L, Molnár GL (2005) Prompt gamma activation analysis using a chopped neutron beam. J Radioanal Nucl Chem 264(2):277–281. doi:10.1007/s10967-005-0707-8

    Article  CAS  Google Scholar 

  90. Szentmiklósi L, Révay Z, Belgya T (2007) An improved beam chopper setup at the Budapest PGAA facility. Nucl Instrum Methods B263:90–94

    Article  CAS  Google Scholar 

  91. Beckurts KH, Wirtz K (1964) Neutron physics. Springer, Berlin

    Book  Google Scholar 

  92. Postma H, Schillebeeckx P (2005) Non-destructive analysis of objects using neutron resonance capture. J Radioanal Nucl Chem 265(2):297–302. doi:10.1007/s10967-005-0824-4

    Article  CAS  Google Scholar 

  93. Révay Z (2007) Comparison of the analytical sensitivities for non-1/v elements in different neutron beams. Nucl Instrum Methods B 263(1):79–84. doi:10.1016/j.nimb.2007.04.195

    Article  CAS  Google Scholar 

  94. Postma H, Perego RC, Schillebeeckx P, Siegler P, Borella A (2007) Neutron resonance capture analysis and applications. J Radioanal Nucl Chem 271(1):95–99. doi:10.1007/s10967-007-0112-6

    Article  CAS  Google Scholar 

  95. Beasley DG, Alghamdi A, Freitas MC, Fernandes A, Révay Z (2009) Simulating the introduction of a sapphire crystal into an epithermal neutron beamline. J Radioanal Nucl Chem 281:307–311

    Article  CAS  Google Scholar 

  96. Festa G, Arcidiacono L, Pappalardo A, Minniti T, Cazzaniga C, Scherillo A, Andreani C, Senesi R (2016) Isotope identification capabilities using time resolved prompt gamma emission from epithermal neutrons. J Instrument 11:C03060. doi:10.1088/1748-0221/11/03/c03060

    Article  Google Scholar 

  97. Barzilov A, Womble PC (2014) Study of Doppler broadening of gamma-ray spectra in 14-MeV neutron activation analysis. J Radioanal Nucl Chem 301(3):811–819. doi:10.1007/s10967-014-3189-8

    Article  CAS  Google Scholar 

  98. Yoon D-K, Jung J-Y, Han S-M, Suh TS (2015) Statistical analysis for discrimination of prompt gamma ray peak induced by high energy neutron: Monte Carlo simulation study. J Radioanal Nucl Chem 303(1):859–866. doi:10.1007/s10967-014-3572-5

    Article  CAS  Google Scholar 

  99. Osawa T (2015) Development of an automatic prompt gamma-ray activation analysis system. J Radioanal Nucl Chem 303(2):1141–1146

    Article  CAS  Google Scholar 

  100. Sun GM (2016) HYPEGAM-P software for prompt gamma activation analysis. Paper presented at the international conference on radioanalytical and nuclear chemistry, 10–15 Apr 2016

  101. Sakai Y, Kubo MK, Matsue H, Yonezawa C (2005) Biological application of Doppler broadening of neutron-induced prompt gamma-ray from energetic 7*Li. J Radioanal Nucl Chem 265(2):287–290. doi:10.1007/s10967-005-0822-6

    Article  CAS  Google Scholar 

  102. Szentmiklósi L, Gméling K, Révay Z (2007) Fitting the boron peak and resolving interferences in the 450–490 keV region of PGAA spectra. J Radioanal Nucl Chem 271(2):447–453. doi:10.1007/s10967-007-0229-7

    Article  CAS  Google Scholar 

  103. Sun GM, Park CS, Choi HD (2008) Doppler-broadened boron peak analysis by using a modified spectral decomposition algorithm. J Radioanal Nucl Chem 278(3):637–642. doi:10.1007/s10967-008-1301-7

    Article  CAS  Google Scholar 

  104. Mackey EA, Paul RL, Lindstrom RM, Anderson DL, Greenberg RR (2005) Sources of uncertainties in prompt γ-ray activation analysis. J Radioanal Nucl Chem 265(2):273–281

    Article  CAS  Google Scholar 

  105. Révay Z (2006) Calculation of uncertainties in prompt gamma activation analysis. Nucl Instrum Methods A564:688–697

    Article  CAS  Google Scholar 

  106. Sudarshan K, Tripathi R, Nair AGC, Acharya R, Reddy AVR, Goswami A (2005) A simple method for correcting the neutron self-shielding effect of matrix and improving the analytical response in prompt gamma-ray neutron activation analysis. Anal Chim Acta 549(1–2):205–211

    Article  CAS  Google Scholar 

  107. Belgya T (2014) Uncertainty calculation of functions of γ-ray detector efficiency and its usage in comparator experiments. J Radioanal Nucl Chem 300(2):559–566. doi:10.1007/s10967-014-2936-1

    Article  CAS  Google Scholar 

  108. Révay Z, Kennedy G (2012) Application of the k 0 method in neutron activation analysis and in prompt gamma activation analysis. Radiochim Acta 100:687–698

    Article  CAS  Google Scholar 

  109. Sudarshan K, Tripathi R, Acharya R, Nair AGC, Reddy AVR, Goswami A (2014) Application of k 0-based internal mono-standard PGNAA for compositional characterization of cement samples. J Radioanal Nucl Chem 300(3):1075–1080. doi:10.1007/s10967-014-3019-z

    Article  CAS  Google Scholar 

  110. Belgya T (2005) Spline and polynomial models of the efficiency function for Ge gamma-ray detectors in a wide energy range. J Radioanal Nucl Chem 265(2):175–179. doi:10.1007/s10967-005-0807-5

    Article  CAS  Google Scholar 

  111. Turhan Ş (2007) Efficiency calibration of an HPGe detector in the 0.1–2.5 MeV energy range for Am-Be neutron source-based PGAA applications. J Radioanal Nucl Chem 273(2):443–450. doi:10.1007/s10967-007-6877-9

    Article  CAS  Google Scholar 

  112. Cho H-J, Chung Y-S, Kim Y-J (2005) Study on prompt gamma-ray spectrometer using Compton suppression system. Nucl Instrum Methods B229(3–4):499–507

    Article  CAS  Google Scholar 

  113. Metwally WA, Mayo CW, Han X, Gardner RP (2005) Coincidence counting for PGNAA applications: is it the optimum method? J Radioanal Nucl Chem 265(2):309–314

    Article  CAS  Google Scholar 

  114. Khang PD, Hai NX, Tan VH, Dien NN (2011) Gamma-gamma coincidence spectrometer setup for neutron activation analysis and nuclear structure studies. Nucl Instrum Methods A 634(1):47–51. doi:10.1016/j.nima.2011.01.025

    Article  CAS  Google Scholar 

  115. Islam MA, Ebihara M, Toh Y, Harada H (2011) Comparison of multiple prompt γ-ray analysis and prompt γ-ray analysis for the elemental analysis of geological and cosmochemical samples. Anal Chem 83:7486–7491

    Article  CAS  Google Scholar 

  116. Szentmiklósi L, Belgya T, Révay Z, Molnár GL (2005) Digital signal processing in prompt-gamma activation analysis. J Radioanal Nucl Chem 264:229–234

    Article  CAS  Google Scholar 

  117. Şahin D (2013) The design considerations of a prototype MPGA system at NIST. Trans Am Nucl Soc 109:121–122

    Google Scholar 

  118. Shetty M, Şahin D (2016) Data acquisition and analysis software for gamma coincidence spectrometry. J Radioanal Nucl Chem 309:243–247

    Article  CAS  Google Scholar 

  119. Szentmiklósi L, Révay Z, Molnár GL (2005) Three-dimensional data processing for time resolved gamma-ray spectrometry. J Radioanal Nucl Chem 265(2):213–219. doi:10.1007/s10967-005-0811-9

    Article  CAS  Google Scholar 

  120. Toh Y, Oshima M, Koizumi M, Kimura A, Hatsukawa Y (2008) Development of multiple prompt gamma-ray analysis. J Radioanal Nucl Chem 276(1):217–220

    Article  CAS  Google Scholar 

  121. Oshima M, Toh Y, Hatsukawa Y, Koizumi M, Kimura A, Haraga A, Ebihara M, Sushida K (2008) Multiple gamma-ray detection method and its application to nuclear chemistry. J Radioanal Nucl Chem 278(2):257–262

    Article  CAS  Google Scholar 

  122. Oura Y, Watanabe R, Ebihara M, Murakami Y, Toh Y, Kimura A, Koizumi M, Furutaka K, Oshima M, Hara K, Kin T, Nakamura S, Harada H (2012) Application of multiple prompt gamma-ray analysis (MPGA) to geochemical and cosmochemical samples. J Radioanal Nucl Chem 291(2):335–339. doi:10.1007/s10967-011-1292-7

    Article  CAS  Google Scholar 

  123. Kudějová P, Révay Z, Kleszcz K, Genreith C, Rossbach M (2015) High-flux PGAA for milligram-weight samples. In: Schwengner R, Zuber K (eds) Cgs15—capture gamma-ray spectroscopy and related topics. EPJ web of conferences, vol 93. doi:10.1051/epjconf/20159308002

  124. Harrison RK, Landsberger S (2009) Determination of boron over a large dynamic range by prompt-gamma activation analysis. Nucl Instrum Methods B267:513–518

    Article  CAS  Google Scholar 

  125. Acharya R (2009) Prompt gamma-ray neutron activation analysis methodology for determination of boron from trace to major contents. J Radioanal Nucl Chem 281(2):291–294

    Article  CAS  Google Scholar 

  126. Söllradl S, Lührs H, Révay Z, Kudějová P, Canella L, Türler A (2013) Increasing the dynamic range for the analysis of boron in PGAA. J Radioanal Nucl Chem 298(3):2069–2073. doi:10.1007/s10967-013-2739-9

    Article  CAS  Google Scholar 

  127. Révay Z (2008) Prompt gamma activation analysis of samples in thick containers. J Radioanal Nucl Chem 276(3):825–830

    Article  CAS  Google Scholar 

  128. Blaauw M, Belgya T (2005) Neutron self-shielding correction for prompt gamma neutron activation analysis of large samples. J Radioanal Nucl Chem 265(2):257–259

    Article  CAS  Google Scholar 

  129. Hurst AM, Summers NC, Szentmiklósi L, Firestone RB, Basunia MS, Escher JE, Sleaford BW (2015) Determination of the effective sample thickness via radiative capture. Nucl Instrum Methods B 362:38–44. doi:10.1016/j.nimb.2015.09.003

    Article  CAS  Google Scholar 

  130. Blaauw M, Degenaar IH, Yonezawa C, Matsue H, de Goeij JJM (2007) Validation experiment for large-sample prompt-gamma neutron activation analysis. J Radioanal Nucl Chem 271(3):745–750. doi:10.1007/s10967-007-0336-5

    Article  CAS  Google Scholar 

  131. Blaauw M, Degenaar IH, de Goeij JJM (2007) Influence of the effective mass on the relative neutron density distribution inside a large sample in prompt-gamma neutron activation analysis. J Radioanal Nucl Chem 271(3):761–764. doi:10.1007/s10967-007-0338-3

    Article  CAS  Google Scholar 

  132. Spyrou Kusminarto NM, Nicolaou GE (1987) 2-D reconstruction of elemental distribution within a sample using neutron capture prompt gamma-rays. J Radioanal Nucl Chem 112(1):57–64

    Article  Google Scholar 

  133. Spyrou NM, Sharaf JM, Rajeswaran S, Mesbahi E (1997) Determination of the elemental distribution in a sample using neutron induced gamma-ray emission tomography. J Radioanal Nucl Chem 217:237–241

    Article  CAS  Google Scholar 

  134. Chen-Mayer HH, Heward WJ, Paul RL, Klug FJ, Gao Y (2003) Distribution of chlorine in quartz determined by neutron beam focusing prompt gamma activation analysis and micro-x-ray fluorescence. J Mater Res 18(10):2486–2493

    Article  CAS  Google Scholar 

  135. Chen-Mayer HH, Mildner DFR, Sharov VA, **ao QF, Cheng YT, Lindstrom RM, Paul RL (1997) A polycapillary bending and focusing lens for neutrons. Rev Sci Instrum 68(10):3744–3750

    Article  CAS  Google Scholar 

  136. Bindel R (2010) NIST, unpublished

  137. Belgya T, Kis Z, Szentmiklósi L, Kasztovszky Z, Kudějová P, Schulze R, Materna T, Festa G, Caroppi PA (2008) First elemental imaging experiments on a combined PGAI and NT setup at the Budapest Research Reactor. J Radioanal Nucl Chem 278(3):751–754. doi:10.1007/s10967-008-1605-7

    Article  CAS  Google Scholar 

  138. Kis Z, Szentmiklósi L, Belgya T, Balasko M, Horvath LZ, Maroti B (2015) Neutron based imaging and element-map** at the Budapest Neutron Centre. In: Lehmann EH, Kaestner AP, Mannes D (eds) Proceedings of the 10th world conference on neutron radiography. Physics Procedia, vol 69, pp 40–47. doi:10.1016/j.phpro.2015.07.005

  139. Canella L, Kudějová P, Schulze R, Türler A, Jolie J (2009) PGAA, PGAI and NT with cold neutrons: test measurement on a meteorite sample. Appl Radiat Isot 67(12):2070–2074. doi:10.1016/j.apradiso.2009.05.008

    Article  CAS  Google Scholar 

  140. Schulze R, Szentmiklósi L, Kudějová P, Canella L, Kis Z, Belgya T, Jolie J, Ebert M, Materna T, Biró K, Hajnal Z (2013) The ANCIENT CHARM project at FRM II: three-dimensional elemental map** by prompt gamma activation imaging and neutron tomography. J Anal At Spectrom 28(9):1508–1512

    Article  CAS  Google Scholar 

  141. Szentmiklósi L, Révay Z, Belgya T, Simonits A, Kis Z (2008) Combining prompt gamma activation analysis and off-line counting. J Radioanal Nucl Chem 278(3):657–660

    Article  CAS  Google Scholar 

  142. Di Nicola L, Schnabel C, Wilcken KM, Gmeling K (2009) Determination of chlorine concentrations in whole rock: comparison between prompt-gamma activation and isotope-dilution AMS analysis. Quat Geochronol 4(6):501–507. doi:10.1016/j.quageo.2009.08.001

    Article  Google Scholar 

  143. Schütz CL, Brochhausen C, Hampel G, Iffland D, Kuczewski B, Otto G, Schmitz T, Stieghorst C, Kratz JV (2012) Intercomparison of inductively coupled plasma mass spectrometry, quantitative neutron capture radiography, and prompt gamma activation analysis for the determination of boron in biological samples. Anal Bioanal Chem 404(6):1887–1895. doi:10.1007/s00216-012-6329-4

    Google Scholar 

  144. Belgya T, Molnar GL, Révay Z, Weil JL (2005) Determination of thermal neutron capture cross sections using cold neutron beams. In: Haight RC, Chadwick MB, Kawano T, Talou P (eds) International conference on nuclear data for science and technology, Pts 1 and 2. AIP conference proceedings, vol 769, pp 744–747

  145. Firestone RB (2016) Determination of thermal neutron capture cross sections from prompt gamma-ray data. Paper presented at the international conference on radioanalytical and nuclear chemistry, Budapest, 10–15 Apr 2016

  146. Szentmiklósi L, Révay Z, Maróti B, Párkányi D, Harsányi I (2016) High-energy calibration data for neutron activation analysis. Paper presented at the International Conference on Radioanalytical and Nuclear Chemistry, Budapest, 10–15 Apr 2016

  147. Belgya T (2008) New gamma-ray intensities for the 14N(n, γ)15N high energy standard and its influence on PGAA and on nuclear quantities. J Radioanal Nucl Chem 276(3):609–614. doi:10.1007/s10967-008-0607-9

    Article  CAS  Google Scholar 

  148. Meierhofer G, Canella L, Grabmayr P, Jochum J, Jolie J, Kudějová P, Warr N (2009) Prompt gamma rays in (77)Ge after neutron capture on (76)Ge. Capture gamma-ray spectroscopy and related topics, vol 1090, pp 559–563. doi:10.1063/1.3087085

  149. Meierhofer G, Kudějová P, Canella L, Grabmayr P, Jochum J, Jolie J (2009) Thermal neutron capture cross-section of 76Ge. Eur Phys J A 40(1):61–64. doi:10.1140/epja/i2008-10741-0

    Article  CAS  Google Scholar 

  150. Meierhofer G, Grabmayr P, Jochum J, Kudějová P, Canella L, Jolie J (2010) Thermal neutron capture cross section of 74Ge. Phys Rev C 81:027603. doi:10.1103/PhysRevC.81.027603

    Article  CAS  Google Scholar 

  151. Meierhofer G, Grabmayr P, Canella L, Kudějová P, Jolie J, Warr N (2012) Prompt γ rays in 77Ge and 75Ge after thermal neutron capture. Eur Phys J A 48(2):20. doi:10.1140/epja/i2012-12020-y

    Article  CAS  Google Scholar 

  152. Révay Z, Belgya T, Firestone RB (2007) Determination of thermal neutron capture cross-sections at Budapest PGAA facility. In: Alarcon R, Cole PL, Djalali C, Umeres F (eds) Vii Latin American symposium on nuclear physics and applications. AIP conference proceedings, vol 947, pp 445–448

  153. Žerovnik G, Becker B, Belgya T, Genreith C, Harada H, Kopecky S, Radulović V, Sano T, Schillebeeckx P, Trkov A (2015) Systematic effects on cross-section data derived from reaction rates at a cold neutron beam. Nucl Instrum Methods A799:29–36. doi:10.1016/j.nima.2015.07.008

    Article  CAS  Google Scholar 

  154. Park CS, Sun GM, Choi HD (2006) Determination of thermal neutron radiative capture cross section of 6Li. Nucl Instrum Methods B245:367–370

    Article  CAS  Google Scholar 

  155. Firestone RB, Révay Z (2016) Thermal neutron capture cross sections for 16, 17, 18O and 2H. Phys Rev C 93(4):044311

    Article  CAS  Google Scholar 

  156. Firestone RB, Révay Z (2016) Thermal neutron radiative cross sections for Li-6, Li-7, Be-9, B-10, B-11, C-12, C-13, and N-14, N-15. Phys Rev C 93(5):054306. doi:10.1103/PhysRevC.93.054306

    Article  CAS  Google Scholar 

  157. Sun GM, Park CS, Choi HD (2005) Determination of the prompt k0, H factors and partial γ-ray production cross sections for B, N, Si, P, S and Cl. J Radioanal Nucl Chem 264(3):603–616. doi:10.1007/s10967-005-0760-3

    Article  CAS  Google Scholar 

  158. Belgya T, Uberseder E, Petrich D, Kappeler F (2009) Thermal neutron capture cross section of (22)Ne. In: Blazhev A, Jolie J, Warr N, Zilges A (eds) Capture gamma-ray spectroscopy and related topics. AIP conference proceedings, vol 1090, pp 367–371

  159. Firestone RB, Révay Z, Belgya T (2014) Thermal neutron capture cross sections and neutron separation energies for 23Na(n, γ). Phys Rev C 89(1):014617

    Article  CAS  Google Scholar 

  160. Firestone RB, Krtička M, Révay Z, Szentmiklósi L, Belgya T (2013) Thermal neutron capture cross sections of the potassium isotopes. Phys Rev C 87:024605. doi:10.1103/PhysRevC.87.024605

    Article  CAS  Google Scholar 

  161. Firestone RB, Belgya T, Krtička M, Bečvář F, Szentmiklósi L, Tomandl I (2017) Thermal neutron capture cross section for 56Fe(n, γ). Phys Rev C 95(1):014328

    Article  Google Scholar 

  162. Krtička M, Firestone RB, McNabb DP, Sleaford B, Agvaanluvsan U, Belgya T, Révay Z (2008) Thermal neutron capture cross sections of the palladium isotopes. Phys Rev C 77(5):054615

    Article  CAS  Google Scholar 

  163. Belgya T, Massarzyk R, Szentmiklósi L, Schramm G, Schwengner R, Junghans AR, Wagner A, Grosse E (2015) Combined study of the gamma-ray strength function of Cd-114 with (n, γ) and (γ, γ‘) reactions. In: Schwengner R, Zuber K (eds) Cgs15—capture gamma-ray spectroscopy and related topics. EPJ web of conferences, vol 93. doi:10.1051/epjconf/20159301012

  164. Tartaglione A, Blostein JJ, Mayer RE (2009) Prompt gamma emissions in the reaction In-115(n, γ)In-116 for neutrons around the 1.45 eV absorption resonance. Appl Radiat Isot 67(9):1711–1715. doi:10.1016/j.apradiso.2009.03.078

    Article  CAS  Google Scholar 

  165. Belgya T, Bouland O, Noguere G, Plompen A, Schillebeeckx P, Szentmiklósi L (2008) The thermal neutron capture cross section of (129)I. In: Proceedings of the international conference on nuclear data for science and technology, vol 1. doi:10.1051/ndata:07677

  166. Basunia MS, Firestone RB, Révay Z, Choi HD, Belgya T, Escher JE, Hurst AM, Krtička M, Szentmiklósi L, Sleaford B, Summers NC (2014) Determination of the \({}^{151}{\text{Eu}}({\text{n}}, \upgamma)^{{152{\rm m}}{_{1}}{\rm gEu}}\) and 153Eu(n, γ)154Eu reaction cross sections at thermal neutron energy. Nucl Data Sheets 119:88–90. doi:10.1016/j.nds.2014.08.025

    Article  CAS  Google Scholar 

  167. Choi HD, Firestone RB, Basunia MS, Hurst A, Sleaford B, Summers N, Escher JE, Révay Z, Szentmiklósi L, Belgya T, Krtička M (2014) Radiative capture cross sections of 155,157Gd for thermal neutrons. Nucl Sci Eng 177:219–232. doi:10.13182/NSE13-49

    Article  CAS  Google Scholar 

  168. Hurst AM, Firestone RB, Szentmiklósi L, Révay Z, Basunia MS, Belgya T, Escher JE, Krtička M, Summers NC, Sleaford BW (2014) New measurement of the thermal-capture cross section for the minor isotope 180W. Nucl Data Sheets 119:91–93. doi:10.1016/j.nds.2014.08.026

    Article  CAS  Google Scholar 

  169. Hurst AM, Firestone RB, Szentmiklósi L, Sleaford BW, Basunia MS, Belgya T, Escher JE, Krticka M, Révay Z, Summers NC (2015) Radiative thermal neutron-capture cross sections for the W-180(n, γ) reaction and determination of the neutron-separation energy. Phys Rev C 92(3):034615. doi:10.1103/PhysRevC.92.034615

    Article  CAS  Google Scholar 

  170. Hurst AM, Firestone RB, Sleaford BW, Summers NC, Révay Z, Szentmiklósi L, Basunia MS, Belgya T, Escher JE, Krtička M (2014) Investigation of the tungsten isotopes via thermal neutron capture. Phys Rev C 89(1):014606

    Article  CAS  Google Scholar 

  171. Matters DA, Lerch AG, Hurst AM, Szentmiklósi L, Carroll JJ, Detwiler B, Révay Z, McClory JW, McHale SR, Firestone RB, Sleaford BW, Krticka M, Belgya T (2016) Investigation of Re-186 via radiative thermal-neutron capture on Re-185. Phys Rev C 93(5):054319. doi:10.1103/PhysRevC.93.054319

    Article  CAS  Google Scholar 

  172. Schillebeeckx P, Belgya T, Borella A, Kopecky S, Mengoni A, Quétel CR, Szentmiklósi L, Trešl I, Wynants R (2013) Neutron capture studies of 206Pb at a cold neutron beam. Eur Phys J A 49(11):143. doi:10.1140/epja/i2013-13143-3

    Article  CAS  Google Scholar 

  173. Borella A, Schillebeeckx P, Molnar G, Belgya T, Révay Z, Szentmiklósi L, Berthoumieux E, Gunsing F, Letourneau A, Marie F (2005) The Bi-209(n(th), γ)Bi-210 and Bi-209(n(th), γ)Bi-210 m,Bi-g cross sections determined at the Budapest neutron centre. In: Haight RC, Chadwick MB, Kawano T, Talou P (eds) International conference on nuclear data for science and technology, Pts 1 and 2. AIP conference proceedings, vol 769, pp 648–651

  174. Borella A, Moens A, Schillebeeckx P, Van Bijlen R, Molnár GL, Belgya T, Révay Z, Szentmiklósi L (2005) Determination of the 209Bi(n, γ) capture cross section at a cold neutron beam. J Radioanal Nucl Chem 265(2):267–271. doi:10.1007/s10967-005-0819-1

    Article  CAS  Google Scholar 

  175. Gunsing F, Berthoumieux E, Borella A, Belgya T, Szentmiklósi L, Schillebeeckx P, Drohe JC, Wynants R, Colonna N, Marrone S, Tagliente G, Terlizzi R, Domingo-Pardo C, Tain J, Martinez T, Massimi C, Mastinu PM, Milazzo PM (2011) Neutron Capture on Bi-209: determination of the Production Ratio of Bi-210 m/Bi-210g. J Korean Phys Soc 59(2):1670–1675. doi:10.3938/jkps.59.1670

    CAS  Google Scholar 

  176. Genreith C, Rossbach M, Mauerhofer E, Belgya T, Caspary G (2012) First results of the prompt gamma characterization of Np-237. Nukleonika 57(4):443–446

    CAS  Google Scholar 

  177. Genreith C, Rossbach M, Mauerhofer E, Belgya T, Caspary G (2013) Measurement of thermal neutron capture cross sections of 237Np and 242Pu using prompt gamma neutron activation. J Radioanal Nucl Chem 296(2):699–703. doi:10.1007/s10967-012-2080-8

    Article  CAS  Google Scholar 

  178. Genreith C, Rossbach M, Révay Z, Kudějová P (2014) Determination of (n, γ) cross sections of Am-241 by cold neutron activation. Nucl Data Sheets 119:69–71. doi:10.1016/j.nds.2014.08.021

    Article  CAS  Google Scholar 

  179. Oberstedt S, Billnert R, Belgya T, Bryś T, Geerts W, Guerrero C, Hambsch FJ, Kis Z, Moens A, Oberstedt A, Sibbens G, Szentmiklósi L, Vanleeuw D, Vidali M (2014) High-precision prompt gamma-ray spectral data from the reaction 241Pu(nth, f). Phys Rev C 90(2):024618

    Article  CAS  Google Scholar 

  180. Oberstedt S, Billnert R, Belgya T, Borcea R, Bryś T, Geerts W, Göök A, Hambsch FJ, Kish Z, Martinez Perez T, Oberstedt A, Szentmiklósi L, Vidali M (2014) New prompt fission γ-ray data in response to the OECD/NEA high priority request. Nucl Data Sheets 119:225–228. doi:10.1016/j.nds.2014.08.062

    Article  CAS  Google Scholar 

  181. Révay Z, Belgya T, Molnár GL (2005) New prompt k0 and partial cross section values measured in the cold neutron beam of Budapest Research Reactor. J Radioanal Nucl Chem 265(2):169–173. doi:10.1007/s10967-005-0806-6

    Article  CAS  Google Scholar 

  182. Szentmiklósi L, Révay Z, Belgya T (2006) Measurement of partial gamma-ray production cross-sections and k(0) factors for radionuclides with chopped-beam PGAA. Nucl Instrum Methods A564(2):655–661

    Article  CAS  Google Scholar 

  183. Nair AGC, Acharya R, Sudarshan K, Tripathi R, Reddy AVR, Goswami A (2006) Determination and validation of prompt k(0)-factors with a monochromatic neutron beam at the Dhruva reactor. Nucl Instrum Methods A564(2):662–668. doi:10.1016/j.nima.2006.04.020

    Article  CAS  Google Scholar 

  184. Révay Z, Szentmiklósi L, Kis Z (2010) Determination of new k(0) values for prompt gamma activation analysis at Budapest. Nucl Instrum Methods A622(2):464–467. doi:10.1016/j.nima.2009.12.068

    Article  CAS  Google Scholar 

  185. Szentmiklósi L, Révay Z, Belgya T (2010) Measurement of partial gamma-ray production cross-sections and k(0)-factors for radionuclides with chopped-beam PGAA—part II. Nucl Instrum Methods A622(2):468–472. doi:10.1016/j.nima.2009.12.077

    Article  CAS  Google Scholar 

  186. Hamid A (2012) Determination of k 0-values for some elements in neutron capture gamma-ray for prompt gamma activation analysis. J Radioanal Nucl Chem 291(3):623–628. doi:10.1007/s10967-011-1388-0

    Article  CAS  Google Scholar 

  187. Rossbach M, Genreith C, Randriamalala T, Mauerhofer E, Révay Z, Kudějová P, Söllradl S, Belgya T, Szentmiklósi L, Firestone RB, Hurst AM, Bernstein L, Sleaford B, Escher JE (2015) TANDEM: a mutual cooperation effort for transactinide nuclear data evaluation and measurement. J Radioanal Nucl Chem 304(3):1359–1363. doi:10.1007/s10967-015-4001-0

    Article  CAS  Google Scholar 

  188. Perry DL, English GA, Firestone RB, Molnár GL (2005) Determination of contaminants in rare earth materials by prompt gamma activation analysis (PGAA). J Radioanal Nucl Chem 265(2):229–233. doi:10.1007/s10967-005-0813-7

    Article  CAS  Google Scholar 

  189. English GA, Firestone RB, Perry DL, Reijonen JP, Leung K-N, Garabedian GF, Molnár GL, Révay Z (2008) Prompt gamma activation analysis (PGAA) and short-lived neutron activation analysis (NAA) applied to the characterization of legacy materials. J Radioanal Nucl Chem 277(1):25–29. doi:10.1007/s10967-008-0704-9

    Article  CAS  Google Scholar 

  190. Szentmiklósi L, Kis Z (2015) Characterizing nuclear materials hidden in lead containers by neutron-tomography-driven prompt gamma activation imaging (PGAI-NT). Anal Methods 7(7):3157–3163. doi:10.1039/c5ay00199d

    Article  CAS  Google Scholar 

  191. Zeisler R, Oflaz R, Paul RL, Fagan JA (2012) Use of neutron activation analysis for the characterization of single-wall carbon nanotube materials. J Radioanal Nucl Chem 291(2):561–567

    Article  CAS  Google Scholar 

  192. Révay Z, Belgya T, Molnar GL, Rausch H, Braun T (2006) The analysis Of C(60) and C(70) fullerenes by prompt gamma neutron activation. Chem Phys Lett 423(4–6):450–453. doi:10.1016/j.cplett.2006.03.094

    Article  CAS  Google Scholar 

  193. Szentmiklósi L, Révay Z (2006) Characterization of CaSO4-based dosimeter materials with PGAA and thermoluminescent methods. J Radioanal Nucl Chem 267(2):415–420. doi:10.1007/s10967-006-0064-2

    Article  CAS  Google Scholar 

  194. Perry DL, English GA, Firestone RB, Leung K-N, Garabedian G, Molnár GL, Révay Z (2008) Analyses of oxyanion materials by prompt gamma activation analysis. J Radioanal Nucl Chem 276(1):273–277. doi:10.1007/s10967-007-0445-1

    Article  CAS  Google Scholar 

  195. Mukherji D, Rösler J, Wehrs J, Strunz P, Beran P, Gilles R, Hofmann M, Hoelzel M, Eckerlebe H, Szentmiklósi L, Mácsik Z (2013) Application of in situ neutron and X-ray measurements at high temperatures in the development of Co-Re-based alloys for gas turbines. Metall Mater Trans A 44(1):22–30. doi:10.1007/s11661-012-1363-6

    Article  CAS  Google Scholar 

  196. Mukherji D, Gilles R, Karge L, Strunz P, Beran P, Eckerlebe H, Stark A, Szentmiklósi L, Mácsik Z, Schumacher G, Zizak I, Hofmann M, Hoelzel M, Rösler J (2014) Neutron and synchrotron probes in the development of Co–Re-based alloys for next generation gas turbines with an emphasis on the influence of boron additives. J Appl Crystallogr 47(4):1417–1430. doi:10.1107/S1600576714013624

    Article  CAS  Google Scholar 

  197. Furuta E, Nakahara H, Hatsukawa Y, Matsue H, Sakane H (2008) Neutron activation analysis of trace elements in Japanese hormesis cosmetics. J Radioanal Nucl Chem 278(3):553–557. doi:10.1007/s10967-008-1004-0

    Article  CAS  Google Scholar 

  198. Cho H-J, Chung Y-S, Kim Y-J (2005) Analysis of boron in biological reference materials using prompt gamma activation analysis. J Radioanal Nucl Chem 264(3):701–705. doi:10.1007/s10967-005-0774-x

    Article  CAS  Google Scholar 

  199. Sudarshan K, Tripathi R, Nair AGC, Acharya R, Reddy A, Goswami A (2005) Analysis of reference materials by prompt gamma-ray neutron activation analysis and evaluation of sample-dependent background. Anal Chim Acta 535(1–2):309–315. doi:10.1016/j.aca.2004.11.056

    Article  CAS  Google Scholar 

  200. Sieber JR, Mackey EA, Marlow AF, Paul R, Martin R (2007) Validation of an alkali reaction, borate fusion, X-ray fluorescence method for silicon metal. Powder Diffr 22(2):146–151

    Article  CAS  Google Scholar 

  201. Miura T, Matsue H, Kuroiwa T, Chiba K (2008) Determination of boron in ceramic reference materials by prompt gamma activation analysis using focused neutron guided beam of JRR-3M. J Radioanal Nucl Chem 278(3):653–656. doi:10.1007/s10967-008-1403-2

    Article  CAS  Google Scholar 

  202. Paul RL, Mackey EA, Zeisler R, Spatz RO, Tomlin BE (2009) Determination of elements in SRM soil 2709a by neutron activation analysis. J Radioanal Nucl Chem 282(3):945. doi:10.1007/s10967-009-0250-0

    Article  CAS  Google Scholar 

  203. Paul RL, Lindstrom RM (2012) Preparation and certification of hydrogen in titanium alloy standard reference materials. Metall Mater Trans A 43A:4888–4895. doi:10.1007/s11661-012-1306-2

    Article  CAS  Google Scholar 

  204. Paul RL (2017) Prompt gamma-ray activation analysis for certification of sulfur in fuel oil SRMs. J Radioanal Nucl Chem 311(2):1149–1154. doi:10.1007/s10967-016-4935-x

    Article  CAS  Google Scholar 

  205. Im HJ, Cho HJ, Song BC, Park YJ, Chung YS, Kim WH (2006) Analytical capability of an explosives detection by a prompt gamma-ray neutron activation analysis. Nucl Instrum Methods 566(2):442–447. doi:10.1016/j.nima.2006.06.044

    Article  CAS  Google Scholar 

  206. Tomandl I, Viererbl L, Kudějová P, Lahodova Z, Klupak V, Fikrle M (2015) Determination of trace concentration in TMD detectors using PGAA. In: Schwengner R, Zuber K (eds) Cgs15—capture gamma-ray spectroscopy and related topics. EPJ web of conferences, vol 93. doi:10.1051/epjconf/20159308003

  207. Alvarez E, Biegalski SR, Landsberger S (2007) Methodologies for hydrogen determination in metal oxides by prompt gamma activation analysis. Nucl Instrum Methods B262(2):333–339

    Article  CAS  Google Scholar 

  208. Paul RL (2006) Measurement of hydrogen in advanced materials by cold neutron prompt gamma-ray activation analysis. In: Myneni GR, Hjorvarsson B (eds) Hydrogen in matter. AIP conference proceedings, vol 837, pp 223–229

  209. Chung YS, Moon JH, Cho HJ, Kim HR (2007) Determination of the hydrogen concentration in coal and titanium alloy by prompt gamma neutron activation analysis. J Radioanal Nucl Chem 272(2):391–395

    Article  CAS  Google Scholar 

  210. Cho H-J, Park K-W (2010) Analysis of hydrogen concentration in low-alloy steel. J Radioanal Nucl Chem 284(3):533–537

    Article  CAS  Google Scholar 

  211. Lindstrom RM (2011) Hydrogen measurement in steel: a query. J Radioanal Nucl Chem 289(3):967. doi:10.1007/s10967-010-0951-4

    Article  CAS  Google Scholar 

  212. Wang YB, Iqbal Z (2005) Electrochemical hydrogen adsorption/storage in pure and functionalized single wall carbon nanotubes. In: Heben MJ, Robertson IM, Stumpf R, Vogt T (eds) Materials for hydrogen storage-2004. Materials research society symposium proceedings, vol 837, pp 125–133

  213. van den Berg AWC, Pescarmona PP, Schoonman J, Jansen JC (2007) High-density storage of H-2 in microporous crystalline silica at ambient conditions. Chem Eur J 13(13):3590–3595. doi:10.1002/chem.200601877

    Article  CAS  Google Scholar 

  214. Cao LR, Hattrick-Simpers JR, Bindel R, Tomlin BE, Zeisler R, Paul R, Bendersky LA, Downing RG (2010) Combinatorial study of thin film metal hydride by prompt gamma activation analysis. J Radioanal Nucl Chem 283(1):63–68. doi:10.1007/s10967-009-0058-y

    Article  CAS  Google Scholar 

  215. Aghara SK, Venkatraman S, Manthiram A, Alvarez E II (2005) Investigation of hydrogen content in chemically delithiated lithium-ion battery cathodes using prompt gamma activation analysis. J Radioanal Nucl Chem 265(2):321–328. doi:10.1007/s10967-005-0828-0

    Article  CAS  Google Scholar 

  216. Dorsey DJ, Hebner R, Charlton WS (2005) Application of prompt gamma activation analysis for the determination of water content in composite materials. J Radioanal Nucl Chem 265(2):315–319. doi:10.1007/s10967-005-0827-1

    Article  CAS  Google Scholar 

  217. Kis Z, Sciarretta F, Szentmiklósi L (2017) Water uptake experiments of historic construction materials from Venice by neutron imaging and PGAI methods. Mater Struct 50:159–173

    Article  CAS  Google Scholar 

  218. Atakan V, Chen CW, Paul R, Riman RE (2008) Quantification of hydroxyl content in ceramic oxides: a prompt gamma activation analysis study of BaTiO(3). Anal Chem 80(17):6626–6632. doi:10.1021/ac800020z

    Article  CAS  Google Scholar 

  219. Balazsi C, Bishop A, Yang JHC, Balazsi K, Weber F, Gouma PI (2009) Biopolymer-hydroxyapatite scaffolds for advanced prosthetics. Compos Interfaces 16(2–3):191–200. doi:10.1163/156855408x402902

    Article  CAS  Google Scholar 

  220. Paul RL (2005) Determination of boron in materials by cold neutron prompt gamma-ray activation analysis. Analyst 130:99–103

    Article  CAS  Google Scholar 

  221. Galler P, Raab A, Freitag S, Blandhol K, Feldmann J (2014) Boron speciation in acid digests of metallurgical grade silicon reveals problem for accurate boron quantification by inductively coupled plasma-optical emission spectroscopy. J Anal At Spectrom 29(4):614–622. doi:10.1039/c3ja50383f

    Article  CAS  Google Scholar 

  222. Sun G, Cho D-K, Kim H-S, Lee E-K, Yang H-Y, Moon C-K (2008) Quantitative determination of boron in boron steel by prompt gamma-ray activation analysis. Trans Am Nucl Soc 98:315–316

    Google Scholar 

  223. Fukushima M, Matsue H, Chatt A (2014) A feasibility study to measure low levels of boron in selected Canadian and Japanese foods by prompt gamma activation analysis using the JAEA JRR-3 facility. J Radioanal Nucl Chem 302(3):1225–1229. doi:10.1007/s10967-014-3524-0

    Article  CAS  Google Scholar 

  224. Ramanjaneyulu PS, Sayi YS, Nathaniel TN, Reddy AVR, Ramakumar KL (2007) Determination of boron in water samples by chemical prompt gamma neutron activation analysis. J Radioanal Nucl Chem 273:411–414

    Article  CAS  Google Scholar 

  225. Hamid A (2012) K0-prompt gamma ray activation analysis for estimation of boron and cadmium in aqueous solutions. J Radioanal Nucl Chem 292(1):229–236. doi:10.1007/s10967-011-1457-4

    Article  CAS  Google Scholar 

  226. Höglund C, Zeitelhack K, Kudějová P, Jensen J, Greczynski G, Lu J, Hultman L, Birch J, Hall-Wilton R (2015) Stability of 10B4C thin films under neutron radiation. Radiat Phys Chem 113:14–19. doi:10.1016/j.radphyschem.2015.04.006

    Article  CAS  Google Scholar 

  227. Mairoser T, Schmehl A, Melville A, Heeg T, Canella L, Böni P, Zander W, Schubert J, Shai DE, Monkman EJ, Shen KM, Schlom DG, Mannhart J (2010) Is there an intrinsic limit to the charge-carrier-induced increase of the curie temperature of EuO? Phys Rev Lett 105(25):257206

    Article  CAS  Google Scholar 

  228. Pisoni A, Jacimovic J, Barišić OS, Walter A, Náfrádi B, Bugnon P, Magrez A, Berger H, Révay Z, Forró L (2015) The role of transport agents in MoS2 single crystals. J Phys Chem C 119(8):3918–3922. doi:10.1021/jp512013n

    Article  CAS  Google Scholar 

  229. Balazsi C, Cinar FS, Addemir O, Kasztovszky Z, Kover Z, Weber F (2005) Size effects in micro- and nanocarbon added C/Si3N4 composite prepared by hot pressing. In: Dusza J, Danzer R, Morrell R (eds) Fractography of advanced ceramics II. Key engineering materials, vol 290, pp 238–241

  230. Burghaus J, Sougrati MT, Möchel A, Houben A, Hermann RP, Dronskowski R (2011) Local ordering and magnetism in Ga0.9Fe3.1N. J Solid State Chem 184(9):2315–2321. doi:10.1016/j.jssc.2011.06.031

    Article  CAS  Google Scholar 

  231. Scholz T, Dronskowski R (2015) Improved ammonolytic synthesis, structure determination, electronic structure, and magnetic properties of the solid solution SnxFe4–xN (0 ≤ x ≤ 0.9). Inorg Chem 54(17):8800–8807. doi:10.1021/acs.inorgchem.5b01510

    Article  CAS  Google Scholar 

  232. Lührs H, Soellradl S, King SP, Hanna JV, Konzett J, Fischer RX, Schneider H (2014) Ambient and high-pressure synthesis, composition, and crystal structure of B-mullites. Cryst Res Technol 49(1):21–31. doi:10.1002/crat.201300210

    Article  CAS  Google Scholar 

  233. Hoffmann K, Hooper TJN, Murshed MM, Dolotko O, Révay Z, Senyshyn A, Schneider H, Hanna JV, Gesing TM, Fischer RX (2016) Formation, stability and crystal structure of mullite-type Al6−xBxO9. J Solid State Chem 243:124–135. doi:10.1016/j.jssc.2016.08.018

    Article  CAS  Google Scholar 

  234. Cataldo F, Angelini G, Révay Z, Osawa E, Braun T (2014) Wigner energy of nanodiamond bombarded with neutrons or irradiated with γ radiation. Fuller Nanotub Carbon Nanostruct 22(10):861–865. doi:10.1080/1536383X.2013.858131

    Article  CAS  Google Scholar 

  235. Claudio T, Stein N, Stroppa DG, Klobes B, Koza MM, Kudějová P, Petermann N, Wiggers H, Schierning G, Hermann RP (2014) Nanocrystalline silicon: lattice dynamics and enhanced thermoelectric properties. Phys Chem Chem Phys 16(47):25701–25709. doi:10.1039/C3CP53749H

    Article  CAS  Google Scholar 

  236. Seemann KM, Luysberg M, Révay Z, Kudějová P, Sanz B, Cassinelli N, Loidl A, Ilicic K, Multhoff G, Schmid TE (2015) Magnetic heating properties and neutron activation of tungsten-oxide coated biocompatible FePt core–shell nanoparticles. J Control Release 197:131–137. doi:10.1016/j.jconrel.2014.11.007

    Article  CAS  Google Scholar 

  237. Révay Z, Belgya T, Szentmiklósi L, Kis Z, Wootsch A, Teschner D, Swoboda M, Schlögl R, Borsodi J, Zepernick R (2008) In situ determination of hydrogen inside a catalytic reactor using prompt gamma activation analysis. Anal Chem 80(15):6066–6071

    Article  CAS  Google Scholar 

  238. Teschner D, Borsodi J, Wootsch A, Révay Z, Hävecker M, Knop-Gericke A, Jackson SD, Schlögl R (2008) the roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation. Science 320(5872):86–89

    Article  CAS  Google Scholar 

  239. Farra R, Eichelbaum M, Schlogl R, Szentmiklósi L, Schmidt T, Amrute AP, Mondelli C, Perez-Ramirez J, Teschner D (2013) Do observations on surface coverage-reactivity correlations always describe the true catalytic process? A case study on ceria. J Catal 297:119–127. doi:10.1016/j.jcat.2012.09.024

    Article  CAS  Google Scholar 

  240. Friedrich M, Villaseca SA, Szentmiklósi L, Teschner D, Armbruster M (2013) Order-induced selectivity increase of Cu60Pd40 in the semi-hydrogenation of acetylene. Materials 6(7):2958–2977. doi:10.3390/ma6072958

    Article  CAS  Google Scholar 

  241. Benko T, Beck A, Frey K, Sranko DF, Geszti O, Safran G, Maroti B, Schay Z (2014) Bimetallic Ag-Au/SiO2 catalysts: formation, structure and synergistic activity in glucose oxidation. Appl Catal A Gen 479:103–111. doi:10.1016/j.apcata.2014.04.027

    Article  CAS  Google Scholar 

  242. Szabados E, Sranko DF, Somodi F, Maroti B, Kemeny S, Tungler A (2016) Wet oxidation of dimethylformamide via designed experiments approach studied with Ru and Ir containing Ti mesh monolith catalysts. J Ind Eng Chem 34:405–414. doi:10.1016/j.jiec.2015.12.019

    Article  CAS  Google Scholar 

  243. Buchberger I, Seidlmayer S, Pokharel A, Piana M, Hattendorff J, Kudějová P, Gilles R, Gasteiger HA (2015) Aging analysis of graphite/LiNi1/3Mn1/3Co1/3O2 cells using XRD, PGAA, and AC impedance. J Electrochem Soc 162(14):A2737–A2746. doi:10.1149/2.0721514jes

    Article  CAS  Google Scholar 

  244. Söllradl S, Greiwe M, Bukas VJ, Buchner MR, Widenmeyer M, Kandemir T, Zweifel T, Senyshyn A, Günther S, Nilges T, Türler A, Niewa R (2015) Nitrogen-do** in ZnO via combustion synthesis? Chem Mater 27(12):4188–4195. doi:10.1021/cm504200q

    Article  CAS  Google Scholar 

  245. Leventis N, Sotiriou-Leventis C, Saeed AM, Donthula S, Far HM, Rewatkar PM, Kaiser H, Robertson JD, Lu HB, Churu G (2016) Nanoporous polyurea from a triisocyanate and boric acid: a paradigm of a general reaction pathway for lsocyanates and mineral acids. Chem Mater 28(1):67–78. doi:10.1021/acs.chemmater.5b03117

    Article  CAS  Google Scholar 

  246. Moser M, Vilé G, Colussi S, Krumeich F, Teschner D, Szentmiklósi L, Trovarelli A, Pérez-Ramírez J (2015) Structure and reactivity of ceria–zirconia catalysts for bromine and chlorine production via the oxidation of hydrogen halides. J Catal 331:128–137. doi:10.1016/j.jcat.2015.08.024

    Article  CAS  Google Scholar 

  247. Moser M, Paunovic V, Guo Z, Szentmiklósi L, Hevia MG, Higham M, Lopez N, Teschner D, Perez-Ramirez J (2016) Interplay between surface chemistry and performance of rutile-type catalysts for halogen production. Chem Sci 7(5):2996–3005. doi:10.1039/C5SC04247J

    Article  CAS  Google Scholar 

  248. Kovnir K, Armbrüster M, Teschner D, Venkov TV, Szentmiklósi L, Jentoft FC, Knop-Gericke A, Grin Y, Schlögl R (2009) In situ surface characterization of the intermetallic compound PdGa—a highly selective hydrogenation catalyst. Surf Sci 603(10):1784–1792. doi:10.1016/j.susc.2008.09.058

    Article  CAS  Google Scholar 

  249. Mendez AE, Prelas MA, Glascock M, Ghosh TK (2006) A novel method for the diffusion of Boron in 60-80 micron size natural Diamond type II/a powder. In: Ila D, Mailhiot C, Saganti PB (eds) Materials in extreme environments. Materials research society symposium proceedings, vol 929, pp 155–160

  250. Rios Perez CA, Lowrey JD, Biegalski S, Deinert MR (2012) Xenon diffusion studies with prompt gamma activation analysis. J Radioanal Nucl Chem 291(1):261–265. doi:10.1007/s10967-011-1328-z

    Article  CAS  Google Scholar 

  251. Rios Perez CA, Biegalski S, Deinert MR (2013) Measuring the diffusion of noble gases through a porous medium using prompt gamma activation analysis. J Radioanal Nucl Chem 296(2):951–956. doi:10.1007/s10967-012-2003-8

    Article  CAS  Google Scholar 

  252. Anderson DL, Mackey EA (2005) Improvements in food analysis by thermal neutron capture prompt gamma-ray spectrometry. J Radioanal Nucl Chem 263(3):683–689. doi:10.1007/s10967-005-0643-7

    Article  CAS  Google Scholar 

  253. Toh Y, Oshima M, Koizumi M, Osa A, Kimura A, Goto J, Hatsukawa Y (2006) Analysis of cadmium in food by multiple prompt γ-ray spectroscopy. Appl Radiat Isot 64:751–754

    Article  CAS  Google Scholar 

  254. Toh Y, Murakami Y, Furutaka K, Kimura A, Koizumi M, Hara K, Kin T, Nakamura S, Harada H (2012) Feasibility study for the quantification of total protein content by multiple prompt gamma-ray analysis. Appl Radiat Isot 70(6):984–987. doi:10.1016/j.apradiso.2012.02.116

    Article  CAS  Google Scholar 

  255. Zhao L, Robinson L, Paul RL, Greenberg RR, Miao SL (2005) Determination of carbon, nitrogen and phosphorus in cattail using cold neutron prompt-gamma activation analysis. J Radioanal Nucl Chem 263(3):805–810. doi:10.1007/s10967-005-0662-4

    Article  CAS  Google Scholar 

  256. Zhao L, Robinson L, Paul RL, Greenberg RR, Miao SL (2007) Application of cold neutron prompt-gamma activation analysis in environmental studies of aquatic plants. J Radioanal Nucl Chem 271(3):777–782. doi:10.1007/s10967-007-0341-8

    Article  CAS  Google Scholar 

  257. Zhao L, Robinson L, Mackey E, Paul R, Greenberg R (2008) Determination of carbon, nitrogen, and phosphorus in cattail using thermal neutron prompt gamma activation analysis. J Radioanal Nucl Chem 277(1):275–280

    Article  CAS  Google Scholar 

  258. Cho HJ, Chun KJ, Park KW, Chung YS, Kim HR (2007) Determination of boron in a black mouse by prompt gamma activation analysis. J Radioanal Nucl Chem 272(2):403–407. doi:10.1007/s10967-007-0536-z

    Article  CAS  Google Scholar 

  259. Schmitz T, Appelman K, Kudějová P, Schutz C, Kratz JV, Moss R, Otto G, Hampel G (2011) Determination of boron concentration in blood and tissue samples from patients with liver metastases of colorectal carcinoma using prompt gamma ray activation analysis (PGAA). Appl Radiat Isot 69(7):936–941. doi:10.1016/j.apradiso.2011.02.007

    Article  CAS  Google Scholar 

  260. Grunewald C, Sauberer M, Filip T, Wanek T, Stanek J, Mairinger S, Rollet S, Kudějová P, Langer O, Schutz C, Blaickner M, Kuntner C (2017) On the applicability of F-18 FBPA to predict L-BPA concentration after amino acid preloading in HuH-7 liver tumor model and the implication for liver boron neutron capture therapy. Nucl Med Biol 44:83–89. doi:10.1016/j.nucmedbio.2016.08.012

    Article  CAS  Google Scholar 

  261. Mostafaei F, McNeill FE, Chettle DR, Noseworthy MD, Prestwich WV (2015) The feasibility of in vivo quantification of bone-gadolinium in humans by prompt gamma neutron activation analysis (PGNAA) following gadolinium-based contrast-enhanced MRI. Radiat Phys Chem 116:248–251. doi:10.1016/j.radphyschem.2015.04.016

    Article  CAS  Google Scholar 

  262. Marschall HR, Kasztovszky Z, Gmeling K, Altherr R (2005) Chemical analysis of high-pressure metamorphic rocks by PGNAA: comparison with results from XRF and solution ICP-MS. J Radioanal Nucl Chem 265(2):339–348. doi:10.1007/s10967-005-0830-6

    Article  CAS  Google Scholar 

  263. Miyoshi M, Shimono M, Hasenaka T, Sano T, Fukuoka T (2008) Determination of boron and other elements in volcanic rocks by prompt gamma-ray analysis: an application to magma genesis in Kyushu island, SW-Japan. J Radioanal Nucl Chem 278(2):343–347. doi:10.1007/s10967-008-9607-z

    Article  CAS  Google Scholar 

  264. Gméling K, Simonits A, Sziklai László I, Párkányi D (2014) Comparative PGAA and NAA results of geological samples and standards. J Radioanal Nucl Chem 300(2):507–516. doi:10.1007/s10967-014-3032-2

    Article  CAS  Google Scholar 

  265. Kudějová P, Canella L, Schulze R, Jolie J, Türler A (2009) New PGAI-NT and PGAA at FRM II for geological samples: test measurements on Allende meteorite. Geochim Cosmochim Acta 73(13):A701

    Google Scholar 

  266. Latif SA, Oura Y, Ebihara M, Nakahara H (2013) Non-destructive elemental analysis of large meteorite samples by prompt gamma-ray neutron activation analysis with the internal mono-standard method. Anal Bioanal Chem 405(27):8749–8759. doi:10.1007/s00216-013-7331-1

    Article  CAS  Google Scholar 

  267. Adur B, Netravali S, Damle M, Mali HB (2014) Analysis of major & minor elements in meteorites by SEM-EDS and PGNAA. Meteorit Planet Sci 49:A9

    Google Scholar 

  268. Lim JM, Jeong JH, Lee JH (2013) Instrumental neutron activation analysis of coal and its combustion residues from a power plant. J Radioanal Nucl Chem 298(1):201–208. doi:10.1007/s10967-012-2371-0

    Article  CAS  Google Scholar 

  269. Cristache C, Gméling K, Culicov O, Frontasyeva MV, Toma M, Duliu OG (2009) An ENAA and PGAA comparative study of anoxic Black Sea sediments. J Radioanal Nucl Chem 279(1):7–12. doi:10.1007/s10967-007-7214-z

    Article  CAS  Google Scholar 

  270. Mizera J, Řanda Z, Tomandl I (2012) Geochemical characterization of impact glasses from the Zhamanshin crater by various modes of activation analysis. Remarks on genesis of irghizites. J Radioanal Nucl Chem 293(1):359–376. doi:10.1007/s10967-012-1673-6

    Article  CAS  Google Scholar 

  271. Bunch TE, Hermes RE, Moore AMT, Kennett DJ, Weaver JC, Wittke JH, DeCarli PS, Bischoff JL, Hillman GC, Howard GA, Kimbel DR, Kletetschka G, Lipo CP, Sakai S, Révay Z, West A, Firestone RB, Kennett JP (2012) Very high-temperature impact melt products as evidence for cosmic airbursts and impacts 12,900 years ago. Proc Natl Acad Sci USA 109(28):E1903–E1912. doi:10.1073/pnas.1204453109

    Article  CAS  Google Scholar 

  272. Shozugawa K, Matsuo M, Sano Y, Toh Y, Murakami Y, Furutaka K, Koizumi M, Kimura A, Hara K, Kin T, Oshima M, Nakamura S, Harada H (2012) Chemical composition of sediments from marine shallow-water hydrothermal mounds in Wakamiko submarine crater revealed by multiple prompt gamma-ray analysis. J Radioanal Nucl Chem 291(2):341–346. doi:10.1007/s10967-011-1347-9

    Article  CAS  Google Scholar 

  273. Bounakhla M, Embarch K, Tahri M, Baghdad B, Naimi M, Bouabdli A, Sonnet P, Révay Z, Belgya T (2012) PGAA metals analysis in tailings in Zaida abandoned mine, high Moulouya, Morocco. J Radioanal Nucl Chem 291(1):129–135. doi:10.1007/s10967-011-1321-6

    Article  CAS  Google Scholar 

  274. Yamazaki S, Oura Y, Ebihara M (2007) Determination of hydrogen in rock samples by neutron-induced prompt gamma-ray analysis. J Radioanal Nucl Chem 272(2):353–357

    Article  CAS  Google Scholar 

  275. Gméling K, Harangi S, Kasztovszky Z (2005) Boron and chlorine concentration of volcanic rocks: an application of prompt gamma activation analysis. J Radioanal Nucl Chem 265(2):201–212. doi:10.1007/s10967-005-0810-x

    Article  CAS  Google Scholar 

  276. Gméling K, Kasztovszky Z, Szentmiklósi L, Révay Z, Harangi S (2007) Boron concentration measurements by prompt gamma activation analysis: application on miocene-quaternary volcanics of the Carpathian-Pannonian Region. J Radioanal Nucl Chem 271(2):397–403. doi:10.1007/s10967-007-0222-1

    Article  CAS  Google Scholar 

  277. Marschall HR, Altherr R, Gmeling K, Kasztovszky Z (2009) Lithium, boron and chlorine as tracers for metasomatism in high-pressure metamorphic rocks: a case study from Syros (Greece). Mineral Petrol 95(3–4):291–302. doi:10.1007/s00710-008-0032-3

    Article  CAS  Google Scholar 

  278. Kaliwoda M, Marschall HR, Marks MAW, Ludwig T, Altherr R, Markl G (2011) Boron and boron isotope systematics in the peralkaline Ilimaussaq intrusion (South Greenland) and its granitic country rocks: a record of magmatic and hydrothermal processes. Lithos 125(1–2):51–64. doi:10.1016/j.lithos.2011.01.006

    Article  CAS  Google Scholar 

  279. Hamid A, Hassan AM (2012) Evaluation of Gd, Sm and Eu in Egyptian monazite samples using the prompt neutron capture gamma-ray technique. J Radioanal Nucl Chem 291(3):617–621. doi:10.1007/s10967-011-1363-9

    Article  CAS  Google Scholar 

  280. Prettyman TH, Mittlefehldt DW, Yamashita N, Lawrence DJ, Beck AW, Feldman WC, McCoy TJ, McSween HY, Toplis MJ, Titus TN, Tricarico P, Reedy RC, Hendricks JS, Forni O, Le Corre L, Li J-Y, Mizzon H, Reddy V, Raymond CA, Russell CT (2012) Elemental map** by Dawn reveals exogenic H in Vesta’s regolith. Science 338(6104):242–246. doi:10.1126/science.1225354

    Article  CAS  Google Scholar 

  281. Kasztovszky Z, Biro KT, Marko A, Dobosi V (2008) Cold neutron prompt gamma activation analysis—a non-destructive method for characterization of high silica content chipped stone tools and raw materials. Archaeometry 50:12–29

    CAS  Google Scholar 

  282. Szakmany G, Kasztovszky Z, Szilagyi V, Starnini E, Friedel O, Biro KT (2011) Discrimination of prehistoric polished stone tools from Hungary with non-destructive chemical prompt gamma activation analyses (PGAA). Eur J Mineral 23(6):883–893. doi:10.1127/0935-1221/2011/0023-2148

    Article  CAS  Google Scholar 

  283. Kasztovszky Z, Biró KT, Kis Z (2014) Prompt Gamma Activation Analysis of the Nyírlugos obsidian core depot find. J Lithic Stud 1(1):151–163

    Article  Google Scholar 

  284. Bohus LS, de Antczak MMM, Greaves ED, Antczak A, Bermudez J, Kasztovszky Z, Poirier T, Simonits A (2005) Incipient archaeometry in Venezuela: provenance study of pre-Hispanic pottery figurines. J Radioanal Nucl Chem 265(2):247–256. doi:10.1007/s10967-005-0816-4

    Article  CAS  Google Scholar 

  285. Pino F, Sajo-Castelli AM, Barros H, Vermaercke P, Sneyers L, Bohus LS, de Antczak MMM, Antczak A (2013) k0-INAA of Venezuelan ceramics and complete statistical analysis to establish their provenance. J Radioanal Nucl Chem 298(2):1257–1272. doi:10.1007/s10967-013-2603-y

    Article  CAS  Google Scholar 

  286. Abraham E, Bessou M, Ziéglé A, Hervé M-C, Szentmiklósi L, Kasztovszky ZS, Kis Z, Menu M (2014) Terahertz, X-ray and neutron computed tomography of an Eighteenth Dynasty Egyptian sealed pottery. Appl Phys A 117(3):963–972. doi:10.1007/s00339-014-8779-3

    Article  CAS  Google Scholar 

  287. Prudêncio MI, Dias MI, Burbidge CI, Kasztovszky Z, Marques R, Marques JG, Cardoso GJO, Trindade MJ, Maróti B, Ruiz F, Esteves L, Matos MA, Pais A (2016) PGAA, INAA and luminescence to trace the “history” of “The Panoramic View of Lisbon”: Lisbon before the earthquake of 1755 in painted tiles (Portugal). J Radioanal Nucl Chem 307(1):541–547. doi:10.1007/s10967-015-4176-4

    Article  CAS  Google Scholar 

  288. Palamara E, Zacharias N, Xanthopoulou M, Kasztovszky Z, Kovacs I, Palles D, Kamitsos EI (2016) Technology issues of Byzantine glazed pottery from Corinth, Greece. Microchem J 129:137–150. doi:10.1016/j.microc.2016.06.008

    Article  CAS  Google Scholar 

  289. Moropoulou A, Zacharias N, Delegou ET, Maroti B, Kasztovszky Z (2016) Analytical and technological examination of glass tesserae from Hagia Sophia. Microchem J 125:170–184. doi:10.1016/j.microc.2015.11.020

    Article  CAS  Google Scholar 

  290. Dias MI, Prudêncio MI, Kasztovszky Z, Maróti B, Harsányi I, Flor P (2017) Nuclear techniques applied to provenance and technological studies of Renaissance majolica roundels from Portuguese museums attributed to della Robbia Italian workshop. J Radioanal Nucl Chem 312(2):205–219. doi:10.1007/s10967-017-5235-9

    Article  CAS  Google Scholar 

  291. Constantinescu B, Cristea-Stan D, Szőkefalvi-Nagy Z, Kovács I, Harsányi I, Kasztovszky Z (2017) PIXE and PGAA—complementary methods for studies on ancient glass artefacts (from Byzantine, late medieval to modern Murano glass). Nucl Instrum Methods B. doi:10.1016/j.nimb.2017.07.017

    Google Scholar 

  292. Rehren T, Belgya T, Jambon A, Káli G, Kasztovszky Z, Kis Z, Kovács I, Maróti B, Martinón-Torres M, Miniaci G, Pigott VC, Radivojević M, Rosta L, Szentmiklósi L, Szőkefalvi-Nagy Z (2013) 5,000 years old Egyptian iron beads made from hammered meteoritic iron. J Archaeol Sci 40(12):4785–4792. doi:10.1016/j.jas.2013.06.002

    Article  CAS  Google Scholar 

  293. Watkinson D, Rimmer M, Kasztovszky Z, Kis Z, Maroti B, Szentmiklósi L (2014) The use of neutron analysis techniques for detecting the concentration and distribution of chloride ions in archaeological iron. Archaeometry 56(5):841–859. doi:10.1111/arcm.12058

    Article  CAS  Google Scholar 

  294. Wagner FE, Gebhard R, Häusler W, Wagner U, Albert P, Hess H, Révay Z, Kudějová P, Kleszcz K (2016) Study of archaeological iron objects by PGAA, Mössbauer spectroscopy and X-ray diffraction. Hyperfine Interact 237(1):30. doi:10.1007/s10751-016-1285-6

    Article  CAS  Google Scholar 

  295. Rogante M, De Marinis G, Kasztovszky Z, Milazzo F (2007) Comparative analysis of iron age bronze archaeological objects from a picenum necropolis of centre Italy with prompt gamma activation analysis. Nuovo Cimento Della Societa Italiana Di Fisica C Geophys Space Phys 30(1):113–122. doi:10.1393/ncc/i2006-10037-7

    Google Scholar 

  296. Manescu A, Fiori F, Giuliani A, Kardjilov N, Kasztovszky Z, Rustichelli F, Straumal B (2008) Non-destructive compositional analysis of historic organ reed pipes. J Phys Condens Matter 20(10):104250. doi:10.1088/0953-8984/20/10/104250

    Article  CAS  Google Scholar 

  297. Mödlinger M, Piccardo P, Kasztovszky Z, Kovacs I, Szokefalvi-Nagy Z, Kali G, Szilagyi V (2013) Archaeometallurgical characterization of the earliest European metal helmets. Mater Charact 79:22–36. doi:10.1016/j.matchar.2013.02.007

    Article  CAS  Google Scholar 

  298. Mödlinger M, Kasztovszky Z, Kis Z, Maróti B, Kovács I, Szőkefalvi-Nagy Z, Káli G, Horváth E, Sánta Z, El Morr Z (2014) Non-invasive PGAA, PIXE and ToF-ND analyses on Hungarian Bronze Age defensive armour. J Radioanal Nucl Chem 300(2):787–799. doi:10.1007/s10967-014-3064-7

    Article  CAS  Google Scholar 

  299. Lyubomirova V, D**gova R, Kuleff I (2015) Comparison of analytical techniques for analysis of archaeological bronze. Archaeometry 57(4):677–686. doi:10.1111/arcm.12138

    Article  CAS  Google Scholar 

  300. Maróti B, Kis Z, Szentmiklósi L, Horváth E, Káli G, Belgya T (2017) Characterization of a South-Levantine bronze sculpture using position-sensitive prompt gamma activation analysis and neutron imaging. J Radioanal Nucl Chem 312(2):367–375. doi:10.1007/s10967-017-5219-9

    Article  CAS  Google Scholar 

  301. Kiss V, Fischl KP, Horvath E, Kali G, Kasztovszky Z, Kis Z, Maroti B, Szabo G (2015) Non-destructive analyses of bronze artefacts from Bronze Age Hungary using neutron-based methods. J Anal At Spectrom 30(3):685–693. doi:10.1039/C4JA00377B

    Article  CAS  Google Scholar 

  302. Kasztovszky Z, Panczyk E, Fedorowicz W, Révay Z (2005) Comparative archaeometrical study of Roman silver coins by prompt gamma activation analysis and SEM-EDX. J Radioanal Nucl Chem 265(2):193–199. doi:10.1007/s10967-005-0809-3

    Article  CAS  Google Scholar 

  303. Corsi J, Maroti B, Re A, Kasztovszky Z, Szentmiklósi L, Torbagyi M, Agostino A, Angelici D, Allegretti S (2015) Compositional analysis of a historical collection of Cisalpine Gaul’s coins kept at the Hungarian National Museum. J Anal At Spectrom 30(3):730–737. doi:10.1039/c4ja00398e

    Article  CAS  Google Scholar 

  304. Kasztovszky Z, Visser D, Kockelmann W, Pantos E, Brown A, Blaauw M, Hallebeek P, Veerkamp J, Krook W, Stuchfield HM (2007) Combined prompt gamma activation and neutron diffraction analyses of historic metal objects and limestone samples. Nuovo Cimento Della Societa Italiana Di Fisica C Geophys Space Phys 30(1):67–78. doi:10.1393/ncc/i2006-10040-0

    Google Scholar 

  305. Kasztovszky Z, Kockelmann WA, Cippo EP, Gorini G, Tardocchi M (2008) Prompt gamma activation studies on archaeological objects at a pulsed neutron source. Nuovo Cimento Della Societa Italiana Di Fisica C Geophys Space Phys 31(2):143–155. doi:10.1393/ncc/i2008-10292-6

    Google Scholar 

  306. Lehmann EH, Vontobel P, Frei G (2007) The non-destructive study of museums objects by means of neutrons imaging methods and results of investigations. Nuovo Cimento Della Societa Italiana Di Fisica C Geophys Space Phys 30(1):93–104. doi:10.1393/ncc/i2006-10050-x

    Google Scholar 

  307. Kawabata Y, Ozaki M, Lee SW, Sun GM, Sato M (2008) Trials of neutron CT and its PGAA assurance procedure for archeological objects. In: Arif M, Downing RG (eds) 8th World Conference on Neutron Radiography. Gaithersburg, Maryland, 2008. p 285–293

  308. Kasztovszky Z, Kis Z, Belgya T, Kockelmann W, Imberti S, Festa G, Filabozzi A, Andreani C, Kirfel A, Biró KT, Dúzs K, Hajnal Z, Kudějová P, Tardocchi M (2008) Prompt gamma activation analysis and time of flight neutron diffraction on ‘black boxes’ in the ‘Ancient Charm’ project. J Radioanal Nucl Chem 278(3):661–664. doi:10.1007/s10967-008-1405-0

    Article  CAS  Google Scholar 

  309. Festa G, Andreani C, Pascale MPD, Senesi R, Vitali G, Porcinai S, Giusti AM, Schulze R, Canella L, Kudějová P, Mühlbauer M, Schillinger B (2009) A nondestructive stratigraphic and radiographic neutron study of Lorenzo Ghiberti’s reliefs from paradise and north doors of Florence baptistery. J Appl Phys 106(7):074909. doi:10.1063/1.3204514

    Article  CAS  Google Scholar 

  310. Kardjilov N, Festa G (eds) (2017) Neutron methods for archaeology and cultural heritage. Springer, Berlin. doi:10.1007/978-3-319-33163-8

    Google Scholar 

Download references

Acknowledgements

We thank Danyal Turkoglu for providing the data from which Fig. 1 was constructed [66].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard M. Lindstrom.

Glossary

BNCT

Boron neutron capture therapy

CD-ROM

Compact disk read-only memory

FRM II

Forschungs-Neutronenquelle Heinz Maier-Leibnitz

IAEA

International Atomic Energy Agency

INAA

Instrumental neutron activation analysis

MLZ

Heinz Maier-Leibnitz Zentrum

NAA

Neutron activation analysis

NIST

National Institute of Standards and Technology

NT

Neutron tomography

PGAA

Prompt-gamma activation analysis

PGAI

Prompt-gamma activation imaging

PGNAA

Prompt-gamma neutron activation analysis

SINQ

Swiss Spallation Neutron Source

TUM

Technical University of Munich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lindstrom, R.M., Révay, Z. Prompt gamma neutron activation analysis (PGAA): recent developments and applications. J Radioanal Nucl Chem 314, 843–858 (2017). https://doi.org/10.1007/s10967-017-5483-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5483-8

Keywords

Navigation