Neutron-Induced Prompt Gamma Activation Analysis (PGAA)

  • Reference work entry
Handbook of Nuclear Chemistry
  • 7843 Accesses

Abstract

This section presents the principles, the practical aspects, and the applications of neutron-induced prompt gamma activation analysis (PGAA). The fundamentals of the method, the characteristics of the analytical technique, and the instrumentation are introduced. The measurements of samples and standards together with the procedures of the quantitative analysis are described. High-energy gamma-ray spectroscopy, enabling reliable chemical analyses, is discussed in detail. A comprehensive section of the most recent applications of the PGAA method is also given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 1,499.99
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 3,164.99
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Acharya R (2009) J Radioanal Nucl Chem 281:291

    CAS  Google Scholar 

  • Aghara SK, Venkatraman S, Manthiram A, Alvarez E (2005) J Radioanal Nucl Chem 265:321

    CAS  Google Scholar 

  • Ahlgren L, Albertsson M, Areberg J, Kadar L, Linden M, Mattsson S, McNeill F (1999) Acta Oncol 38:431

    CAS  Google Scholar 

  • Alfassi ZB, Chung C (1995) Prompt gamma neutron activation analysis. CRC Press, Boca Raton

    Google Scholar 

  • Alvarez E, Biegalski SR, Landsberger S (2007) Nucl Instrum Meth B 262:333

    CAS  Google Scholar 

  • Anderson DL (2000) J Radioanal Nucl Chem 244:225

    CAS  Google Scholar 

  • Anderson DL, Mackey EA (1993) J Radioanal Nucl Chem 167:145

    Google Scholar 

  • Anderson DL, Mackey EA (2005) J Radioanal Nucl Chem 263:683

    CAS  Google Scholar 

  • Anderson DL, Failey MP, Zoller WH, Walters WB, Gordon GE, Lindstrom RM (1981) J Radioanal Chem 63:97

    CAS  Google Scholar 

  • Anderson DL, Cunningham WC, Capar SG, Baratta EJ, Mackill P (2001) J Radioanal Nucl Chem 249:29

    CAS  Google Scholar 

  • Arunkumar TA, Alvarez E, Manthiram A (2008) J Mater Chem 18:190

    CAS  Google Scholar 

  • ASTM (1998) Standard practice for determining neutron fluence, fluence rate, and spectra by radioactivation techniques (E261), Report E 261-98. ASTM International, West Conshohocken

    Google Scholar 

  • Atakan V, Chen CW, Paul R, Riman RE (2008) Anal Chem 80:6626

    CAS  Google Scholar 

  • Balazsi C, Cinar FS, Kasztovszky Z, Cura ME, Yesilcubuk A, Weber F (2004) Silic Indus 69:293

    CAS  Google Scholar 

  • Balazsi C, Cinar FS, Addemir O, Kasztovszky Z, Kover Z, Weber F (2005) Size effects in micro- and nanocarbon added C/Si3N4 composite prepared by hot pressing. In: Dusza J, Danzer R, Morrell R (eds) Fractography of advanced ceramics Ii. Trans Tech, Zurich-Uetikon, pp 238–241

    Google Scholar 

  • Balazsi C, Bishop A, Yang JHC, Balazsi K, Weber F, Gouma PI (2009) Compos Interfaces 16:191

    CAS  Google Scholar 

  • Beasley DG, Alghamdi A, Freitas MC, Fernandes A, Révay Z (2009) J Radioanal Nucl Chem 281:307

    CAS  Google Scholar 

  • Beckurts KH, Wirtz K (1964) Neutron physics. Springer, Berlin

    Google Scholar 

  • Belgya T (2008) J Radioanal Nucl Chem 276:609

    CAS  Google Scholar 

  • Belgya T, Molnár GL (2004) Nucl Instrum Meth B 213:29

    CAS  Google Scholar 

  • Belgya T, Révay Z, Fazekas B, Héjja I, Dabolczi L, Molnár G, Kis J, Östör J (1997) The new budapest capture gamma-ray facility. In: Molnár GL, Belgya T, Révay Z (eds) Proceedings of the 9th international symposium capture gamma-ray spectroscopy and related topics. Springer, Budapest, pp 826–837

    Google Scholar 

  • Belgya T, Révay Z, Ember PP, Weil JL, Molnár GL (2003) The cold neutron PGAA-NIPS facility at the Budapest Research Reactor. In: Kvasil J, Cejnar P, Krticka M (eds) Proceedings of the 11th international symposium on capture gamma-ray spectroscopy and related topics. World Scientific, Singapore, pp 562–568

    Google Scholar 

  • Belgya T, Révay Z, Molnár GL (2005) J Radioanal Nucl Chem 265:181

    CAS  Google Scholar 

  • Belgya T, Kis Z, Szentmiklosi L, Kasztovszky Z, Festa G, Andreanelli L, De Pascale MP, Pietropaolo A, Kudejova P, Schulze R, Materna T (2008) J Radioanal Nucl Chem 278:713

    CAS  Google Scholar 

  • Biro KT (2005) J Radioanal Nucl Chem 265:235

    CAS  Google Scholar 

  • Blaauw M, Belgya T (2005) J Radioanal Nucl Chem 265:257

    CAS  Google Scholar 

  • Borella A, Moens A, Schillebeeckx P, Van Bijlen R, Molnár GL, Belgya T, Révay Z, Szentmiklósi L (2005) J Radioanal Nucl Chem 265:267

    CAS  Google Scholar 

  • Borsaru M, Berry M, Biggs M, Rojc A (2004) Nucl Instrum Meth B213:530

    Google Scholar 

  • Buckley CE, Birnbaum HK (2002) J Alloy Compd 330:649

    Google Scholar 

  • Byun SH, Sun GM, Choi HD (2002) Nucl Instrum Meth A487:521

    Google Scholar 

  • Byun SH, Sun GM, Choi HD (2004) Nucl Instrum Meth B213:535

    Google Scholar 

  • Cao LR, Hattrick-Simpers JR, Bindel R, Tomlin BE, Zeisler R, Paul R, Bendersky LA, Downing RG (2009) J Radioanal Nucl Chem. doi:10.1007/s10967-009-0058-y

    Google Scholar 

  • Charbucinski J, Duran O, Freraut R, Heresi N, Pineyro I (2004) Appl Radiat Isot 60:771

    CAS  Google Scholar 

  • Chen-Mayer HH, Mildner DFR, Lamaze GP, Paul RL, Lindstrom RM (1999) In: Duggan JL, Morgan IL (eds) Application of accelerators in research and industry (AIP Conference proceedings, Vol. 475), Amer Inst Phys, pp 718–721

    Google Scholar 

  • Chen-Mayer HH, Mackey EA, Paul RL, Mildner DFR (2000) J Radioanal Nucl Chem 244:391

    CAS  Google Scholar 

  • Chen-Mayer HH, Lamaze GP, Mildner DFR, Zeisler R, Gibson WM (2001) Anal Sci 17(Suppl):i629

    Google Scholar 

  • Chen-Mayer HH, Heward WJ, Paul RL, Klug FJ, Gao Y (2003) J Mater Res 18:2486

    CAS  Google Scholar 

  • Cho H-J, Chung Y-S, Kim Y-J (2005a) Nucl Instrum Meth B229:499

    Google Scholar 

  • Cho HJ, Chung YS, Kim YJ (2005b) J Radioanal Nucl Chem 264:701

    CAS  Google Scholar 

  • Cho HJ, Chun KJ, Park KW, Chung YS, Kim HR (2007) J Radioanal Nucl Chem 272:403

    CAS  Google Scholar 

  • Choi HD, Firestone RB, Lindstrom RM, Molnár GL, Mughabghab SF, Paviotti-Corcuera R, Révay Z, Trkov A, Zerkin V, Zhou C (2007) Database of prompt gamma rays from slow neutron capture for elemental analysis (STI/PUB/1263). IAEA, Vienna

    Google Scholar 

  • Chung C (1995) Neutron damage and induced effects on nuclear instruments used for PGAA. In: Alfassi ZB, Chung C (eds) Prompt gamma neutron activation analysis. CRC Press, Boca Raton, pp 37–58

    Google Scholar 

  • Chung C, Chen YR (1991) Nucl Instrum Meth A301:328

    CAS  Google Scholar 

  • Chung YS, Moon JH, Cho HJ, Kim HR (2007) J Radioanal Nucl Chem 272:391

    CAS  Google Scholar 

  • Comar D, Crouzel C, Chasteland M, Riviere R, Kellershohn C (1969a) The use of neutron capture gamma radiations for the analysis of biological samples. In: DeVoe JR (ed) Modern trends in activation analysis (NBS Spec. Pub. 312). National Bureau of Standards, Washington, pp 114–127

    Google Scholar 

  • Comar D, Crouzel C, Chasteland M, Riviere R, Kellershohn C (1969b) Nucl Appl 6:344

    CAS  Google Scholar 

  • Copley JRD, Majkrzak CF (1989) Calculations and measurement of the performance of converging neutron guides. In: Majkrzak CF (ed) Thin-film neutron optical devices: mirrors, supermirrors, multilayer monochromators, polarizers, and beam guides (Proc. SPIE 983). Society of Photo-Optical Instrumentation Engineers, Bellingham, pp 93–104

    Google Scholar 

  • Copley JRD, Stone CA (1989) Nucl Instrum Meth A281:593

    CAS  Google Scholar 

  • Cristache C, Gmeling K, Culicov O, Frontasyeva MV, Toma M, Duliu OG (2009) J Radioanal Nucl Chem 279:7

    CAS  Google Scholar 

  • De Soete D, Gijbels R, Hoste J (1972) Neutron activation analysis. Wiley-Interscience, London

    Google Scholar 

  • Debertin K, Helmer RG (1988) Gamma- and X-ray spectrometry with semiconductor detectors. North-Holland, Amsterdam

    Google Scholar 

  • Deconninck G, Demortier G, Bodart F (1981) Atomic Energy Review, Supplement 2, IAEA, Vienna, pp 151–234

    Google Scholar 

  • Degenaar IH, Blaauw M, Bode P, de Goeij JJM (2004) J Radioanal Nucl Chem 260:311

    CAS  Google Scholar 

  • Dokhale PA, Csikai J, Olah L (2001) Appl Radiat Isot 54:967

    CAS  Google Scholar 

  • Dorsey DJ, Hebner R, Charlton WS (2004) J Compos Mater 38:1505

    CAS  Google Scholar 

  • Dyar MD, Wiedenbeck M, Robertson D, Cross LR, Delaney JS, Ferguson K, Francis CA, Grew ES, Guidotti CV, Hervig RL, Hughes JM, Husler J, Leeman W, McGuire AV, Rhede D, Rothe H, Paul RL, Richards I, Yates M (2001) Geostandard Newslett 25:441

    CAS  Google Scholar 

  • Ebihara M, Oura Y (2001) Earth Planet Space 53:1039

    CAS  Google Scholar 

  • Ehmann WD, Vance DE (1991) Radiochemistry and nuclear methods of analysis. Wiley, New York

    Google Scholar 

  • Elekes Z, Belgya T, Molnár GL, Kiss AZ, Csatlós M, Gulyás J, Krasznahorkay A, Máté Z (2003) Nucl Instrum Meth A503:580

    Google Scholar 

  • Ember PP, Révay Z, Belgya T, Molnar G (2001) Magy Kem Foly 107:438

    CAS  Google Scholar 

  • Ember PP, Belgya T, Molnár GL (2002) Appl Radiat Isot 56:535

    CAS  Google Scholar 

  • Ember PP, Belgya T, Weil JL, Molnár GL (2004) Nucl Instrum Meth B213:406

    Google Scholar 

  • English GA, Firestone RB, Perry DL, Reijonen J, Ludewigt B, Leung KN, Garabedian G, Molnar G, Révay Z (2004) Nucl Instrum Meth B213:410

    Google Scholar 

  • English GA, Firestone RB, Perry DL, Reijonen JP, Leung KN, Garabedian GF, Molnár GL, Révay Z (2008) J Radioanal Nucl Chem 277:25

    CAS  Google Scholar 

  • Fazekas B, Molnár GL, Belgya T, Dabolczi L, Simonits A (1997) J Radioanal Nucl Chem 215:271

    CAS  Google Scholar 

  • Fazekas B, Révay Z, Östör J, Belgya T, Molnár G, Simonits A (1999) Nucl Instrum Meth A422:469

    Google Scholar 

  • Fleming RF (1982) Appl Radiat Isot 33:1263

    CAS  Google Scholar 

  • Freeman JM, Jenkin JG (1966) Nucl Instrum Meth 43:269

    Google Scholar 

  • Freitas MC, Révay Z, Szentmiklosi L, Dionisio I, Dung HM, Pacheco AMG (2008) J Radioanal Nucl Chem 278:381

    CAS  Google Scholar 

  • Furuta E, Nakahara H, Hatsukawa Y, Matsue H, Sakane H (2008) J Radioanal Nucl Chem 278:553

    CAS  Google Scholar 

  • Gilmore G, Hemingway JD (1995) Practical gamma-ray spectrometry. Wiley, Chichester

    Google Scholar 

  • Gmeling K, Harangi S, Kasztovszky Z (2005) J Radioanal Nucl Chem 265:201

    CAS  Google Scholar 

  • Gmeling K, Nemeth K, Martin U, Eby N, Varga Z (2007a) J Volcanol Geoth Res 159:70

    CAS  Google Scholar 

  • Gmeling K, Kasztovszky Z, Szentmiklosi L, Revay Z, Harangi S (2007b) J Radioanal Nucl Chem 271:397

    CAS  Google Scholar 

  • Grazman BL, Schweikert EA (1991) J Radioanal Nucl Chem At 152:497

    CAS  Google Scholar 

  • Harrison RK, Landsberger S (2009) Nucl Instrum Meth B267:513

    Google Scholar 

  • Hatsukawa Y, Oshima M, Hayakawa T, Noh T, Shinohara N (2002) Nucl Instrum Meth A482:328

    Google Scholar 

  • Heath RL, Helmer RG, Davidson JR, Gehrke RJ (1999) Gamma-ray spectrum catalogue: Ge and Si detector spectra, 4th edn. CD-ROM., 4, CD-ROM. INEEL, Idaho Falls

    Google Scholar 

  • Helmer RG, Greenwood RC, Gehrke RJ (1971) Nucl Instrum 96:173

    CAS  Google Scholar 

  • Henkelmann R, Born HJ (1973) J Radioanal Chem 16:473

    CAS  Google Scholar 

  • Hilger A, Kardjilov N, Strobl M, Treimar W, Banhart W (2006) Physica B 385–386:1213

    Google Scholar 

  • Hils T, Boeni P, Stahn J (2004) Focusing parabolic guide for very small samples. Elsevier Science, Physica B-Condensed Matter 350:166–168

    Google Scholar 

  • Ihnat M (2000) J Radioanal Nucl Chem 245:73

    CAS  Google Scholar 

  • Im HJ, Lee YH, Park YJ, Song BC, Cho J, Kim WH (2007) Nucl Instrum Meth A574:272

    Google Scholar 

  • Im HJ, Song K (2009a) Appl Spectrosc Rev 44:317

    CAS  Google Scholar 

  • Im HJ, Song BC, Park YJ, Song K (2009b) Classification of materials for explosives from prompt gamma spectra by using principal component analysis. Pergamon-Elsevier Science, Appl Rad Isot 67:1458–1462

    Google Scholar 

  • Isenhour TL, Morrison GH (1966a) Anal Chem 38:162

    CAS  Google Scholar 

  • Isenhour TL, Morrison GH (1966b) Anal Chem 38:167

    CAS  Google Scholar 

  • Johansen GA, Jackson P (2004) Radioisotope gauges for industrial process measurements. Wiley, Chichester

    Google Scholar 

  • Jones CY, Wu J, Li LP, Haile SM (2005) J Appl Phys 97:114908

    Google Scholar 

  • Jordanov VT, Knoll GF, Huber AC, Pantazis JA (1994) Nucl Instrum Meth A353:261

    Google Scholar 

  • Jurney ET, Starner JW, Lynn JE, Raman S (1997) Phys Rev C 56:118

    CAS  Google Scholar 

  • Kasviki K, Stamatelatos IE, Kalef-Ezra J (2007a) Evaluation of spatial sensitivity of a prompt gamma neutron activation analysis facility for the in vivo determination of nitrogen in small animals. Springer, Berlin, pp 225–231

    Google Scholar 

  • Kasviki K, Stamatelatos IE, Yannakopoulou E, Papadopoulou P, Kalef-Ezra J (2007b) Nucl Instrum Meth B263:3

    Google Scholar 

  • Kasztovszky Z, Révay Z, Belgya T, Fazekas B, Östör J, Molnár GL, Molnar G, Borossay J (1999) J Anal Atom Spectrom 14:593

    CAS  Google Scholar 

  • Kasztovszky Z, Révay Z, Belgya T, Molnár GL (2000) J Radioanal Nucl Chem 244:379

    CAS  Google Scholar 

  • Kasztovszky Z, Révay Z, Molnar G, Wootsch A, Paal Z (2002) Catal Comm 3:553

    CAS  Google Scholar 

  • Kasztovszky Z, de Antczak MM, Antczak A, Milian B, Bermudez J, Sajo-Bohus L (2004) Nukleonika 49:107

    CAS  Google Scholar 

  • Kasztovszky Z, Panczyk E, Fedorowicz W, Révay Z, Sartowska B (2005) J Radioanal Nucl Chem 265:193

    CAS  Google Scholar 

  • Kasztovszky Z, Visser D, Kockelmann W, Pantos E, Brown A, Blaauw M, Hallebeek P, Veerkamp J, Krook W, Stuchfield HM (2007) Nuovo Cimento 30:67

    Google Scholar 

  • Kasztovszky Z, Biro KT, Marko A, Dobosi V (2008a) Archaeometry 50:12

    CAS  Google Scholar 

  • Kasztovszky Z, Biro KT, Marko A, Dobosi V (2008b) J Radioanal Nucl Chem 278:293

    CAS  Google Scholar 

  • Kasztovszky Z, Kis Z, Belgya T, Kockelmann W, Imberti S, Festa G, Filabozzi A, Andreani C, Kirfel A, Biro KT, Duzs K, Hajnal Z, Kudejova P, Tardocchi M (2008c) J Radioanal Nucl Chem 278:661

    CAS  Google Scholar 

  • Kasztovszky Z, Kockelmann WA, Cippo EP, Gorini G, Tardocchi M (2008d) Nuovo Cimento 31:143

    Google Scholar 

  • Kis Z, Fazekas B, Östör J, Révay Z, Belgya T, Molnár GL, Koltay L (1998) Nucl Instrum Methods A418:374

    Google Scholar 

  • Knoll GF (2000) Radiation detection and measurement. Wiley, New York

    Google Scholar 

  • Kobayashi T, Kanda K (1983) Nucl Instrum Meth 204:525

    CAS  Google Scholar 

  • Krusche B, Lieb KP, Daniel H, von Egidy T, Barreau G, Börner HG, Brissot R, Hofmeyr C, Rascher R (1982) Nucl Phys A386:245

    CAS  Google Scholar 

  • Kudejova P, Materna T, Jolie J, Turler A, Wilk P, Baechler S, Kasztovszky Z, Révay Z, Belgya T (2005) J Radioanal Nucl Chem 265:221

    CAS  Google Scholar 

  • Kudejova P, Meierhofer G, Zeitelhack K, Jolie J, Schulze R, Turler A, Materna T (2008) J Radioanal Nucl Chem 278:691

    CAS  Google Scholar 

  • Kudejova P, Canella L, Schulze R, Jolie J, Turler A (2009) New PGAI-NT and PGAA at FRM II for geological samples: test measurements on allende meteorite. Pergamon-Elsevier Science, Geochim Cosmichim Acta 73(Suppl):A701–A701

    Google Scholar 

  • Kvardakov VV, Chen-Mayer HH, Mildner DFR, Somenkov VA (1998) J Appl Phys 83:3876

    CAS  Google Scholar 

  • Lea DE (1934) Nature 133:24

    CAS  Google Scholar 

  • Lehmann EH, Vontobel P, Frei G (2007) Nuovo Cimento C 30:93

    Google Scholar 

  • Leo WR (1987) Techniques for nuclear and particle physics experiments. Springer, Berlin

    Google Scholar 

  • Lim CS, Sowerby BD (2005) J Radioanal Nucl Chem 264:4

    Google Scholar 

  • Lindstrom DJ (1990) Nucl Instrum Meth A299:584

    CAS  Google Scholar 

  • Lindstrom RM (1998) Fresenius J Anal Chem 360:322

    CAS  Google Scholar 

  • Lindstrom RM (2003) J Radioanal Nucl Chem 257:557

    CAS  Google Scholar 

  • Lindstrom RM, Lindstrom DJ, Slaback LA, Langland JK (1990) Nucl Instrum Meth A299:425

    CAS  Google Scholar 

  • Lindstrom RM, Zeisler R, Vincent DH, Greenberg RR, Stone CA, Mackey EA, Anderson DL, Clark DD (1993) J Radioanal Nucl Chem At 167:121

    Google Scholar 

  • Lone MA, Santry DC, Inglis WM (1980) Nucl Instrum Meth 174:521

    CAS  Google Scholar 

  • Lone MA, Leavitt RA, Harrison DA (1981) At Data Nucl Data Tables 26:511

    CAS  Google Scholar 

  • Mackey EA, Copley JRD (1993) J Radioanal Nucl Chem 167:127

    Google Scholar 

  • Mackey EA, Spatz RO (2009) J Radioanal Nucl Chem 281:91

    CAS  Google Scholar 

  • Mackey EA, Gordon GE, Lindstrom RM, Anderson DL (1991) Anal Chem 63:288

    CAS  Google Scholar 

  • Mackey EA, Anderson DL, Liposky PJ, Lindstrom RM, Chen-Mayer H, Lamaze GP (2004) Nucl Instrum Meth B226:426

    Google Scholar 

  • Mackey EA, Cronise MP, Fales CN, Greenberg RR, Leigh SD, Long SE, Marlow AF, Murphy KE, Oflaz R, Sieber JR, Rearick MS, Wood LJ, Yu LL, Wilson SA, Briggs PH, Brown ZA, Budahn J, Kane PF, Hall WL (2007) Anal Bioanal Chem 387:2401

    CAS  Google Scholar 

  • Maier-Leibnitz H (1969) Neutron conducting tubes. In: Ryde N (ed) Neutron-capture gamma-ray spectroscopy (STI/PUB/235). IAEA, Vienna, pp 93–103

    Google Scholar 

  • Manescu A, Fiori F, Giuliani A, Kardjilov N, Kasztovszky Z, Rustichelli F, Straumal B (2008) J Phys-Condens Mat 20:104250

    Google Scholar 

  • Marschall HR, Kasztovszky Z, Gmeling K, Altherr R (2005) J Radioanal Nucl Chem 265:339

    CAS  Google Scholar 

  • Marschall HR, Altherr R, Gmeling K, Kasztovszky Z (2009) Mineral Petrol 95:291

    CAS  Google Scholar 

  • Martinho E, Gonçalves IF, Salgado J (2003) Appl Radiat Isot 58:371

    CAS  Google Scholar 

  • Matsue H, Yonezawa C (2001) J Radioanal Nucl Chem 249:11

    CAS  Google Scholar 

  • Matsumoto T, Aizawa O, Nozaki T, Sato T (1984) Atomkernenergie 44:566

    Google Scholar 

  • Mildner DFR, Chen-Mayer HH (1999) Nucl Instrum Meth At 422: 21

    CAS  Google Scholar 

  • Mildner DFR, Chen-Mayer HH, Gibson WM (2002) J Appl Phys 92:6911

    CAS  Google Scholar 

  • Miri-Hakimabad H, Panjeh H, Vejdani-Noghreiyan A (2008) Nucl Sci Tech 19:109

    Google Scholar 

  • Miura T, Matsue H, Kuroiwa T, Chiba K (2008) J Radioanal Nucl Chem 278:653

    CAS  Google Scholar 

  • Miyoshi M, Shimono M, Hasenaka T, Sano T, Fukuoka T (2008) J Radioanal Nucl Chem 278:343

    CAS  Google Scholar 

  • Molnár GL (2004) Handbook of prompt gamma activation analysis with neutron beams. Kluwer, Dordrecht

    Google Scholar 

  • Molnár G, Belgya T, Dabolczi L, Fazekas B, Révay Z, Veres Á, Bikit I, Kiss Z, Östör J (1997) J Radioanal Nucl Chem 215:111

    Google Scholar 

  • Molnár GL, Révay Z, Paul RL, Lindstrom RM (1998) J Radioanal Nucl Chem 234:21

    Google Scholar 

  • Molnár GL, Révay Z, Belgya T, Firestone RB (2000) Appl Radiat Isot 53:527

    Google Scholar 

  • Molnár GL, Belgya T, Révay Z, Qaim SM (2002a) Radiochim Acta 90:479

    Google Scholar 

  • Molnár GL, Révay Z, Belgya T (2002b) Nucl Instrum Meth 489:140

    Google Scholar 

  • Molnár GL, Révay Z, Belgya T (2004) Nucl Instrum Meth B213:389

    Google Scholar 

  • Moody JR, Greenberg RR, Pratt KW, Rains TC (1988) Anal Chem 60:1203A

    CAS  Google Scholar 

  • Morgan WD (2000) In: Yasumura S, Wang J, Pierson RN (eds) Of mermaids and mountains – three decades of prompt activation in vivo., pp 128–133

    Google Scholar 

  • Naqvi AA, Nagadi MM (2004) J Radioanal Nucl Chem 260:641

    CAS  Google Scholar 

  • Nunez-Lagos R, Virto A (1996) Appl Radiat Isot 47:1011

    CAS  Google Scholar 

  • O’Meara JM, Blackburn BW, Chichester DL, Gierga DP, Yanch JC (2001) Appl Radiat Isot 55:767

    Google Scholar 

  • Orphan VJ, Rasmussen NC (1967) Nucl Instrum Meth 48:282

    CAS  Google Scholar 

  • Orphan VJ, Rasmussen NC, Harper TL (1970) In: Report DASA 2570 (GA 10278), Gulf General Atomic, San Diego, 685

    Google Scholar 

  • Oura Y, Nakahara H, Sueki K, Sato W, Saito A, Tomizawa T, Nishikawa T (1999) Czech J Phys Suppl 49:311

    CAS  Google Scholar 

  • Oura Y, Iguchi H, Nagahata T, Nakamatsu H, Otoshi T, Ebihara M (2007) J Radioanal Nucl Chem 272:381

    CAS  Google Scholar 

  • Owens A (1989) Nucl Instrum Meth A274:297

    CAS  Google Scholar 

  • Owens A, Gehrels N, Pascarelle SM, Teegarden BJ (1991) IEEE Trans Nucl Sci 38:221

    CAS  Google Scholar 

  • Paglia G, Buckley CE, Udovic TJ, Rohl AL, Jones F, Maitland CF, Connolly J (2004) Chem Mater 16:1914

    CAS  Google Scholar 

  • Pallone AK, Demaree JD (2009) Nucl Instrum Meth B267:2927

    Google Scholar 

  • Park CS, Sun GM, Byun SH, Choi HD (2005) J Radioanal Nucl Chem 265:283

    CAS  Google Scholar 

  • Park CS, Sun GM, Choi HD (2006) Nucl Instrum Meth B245:367

    Google Scholar 

  • Park YJ, Song BC, Chowdhury MI, Jee KY (2004) J Radioanal Nucl Chem 260:585

    CAS  Google Scholar 

  • Park YJ, Song BC, Im HJ, Kim JY (2009) Nucl Instrum Meth A606:243

    Google Scholar 

  • Paul R, Mackey EA, Zeisler R, Spatz RO, Tomlin BE (2009) J Radioanal Nucl Chem 282:945

    CAS  Google Scholar 

  • Paul RL (1997) Analyst 122:R35

    Google Scholar 

  • Paul RL (2001) Analyst 126:217

    CAS  Google Scholar 

  • Paul RL (2005) Analyst 130:99

    CAS  Google Scholar 

  • Paul RL, Lindstrom RM (2000) J Radioanal Nucl Chem 243:181

    CAS  Google Scholar 

  • Perego RC, Blaauw M (2005) J Appl Phys 97:123533

    Google Scholar 

  • Perry DL, Firestone RB, Molnár GL, Révay Z, Kasztovszky Z, Gatti RC, Wilde P (2002) J Anal Atom Spectrom 17:32

    CAS  Google Scholar 

  • Perry DL, English GA, Firestone RB, Molnár GL, Révay Z (2005) J Radioanal Nucl Chem 265:229

    CAS  Google Scholar 

  • Perry DL, English GA, Firestone RB, Leung KN, Garabedian G, Molnár GL, Révay Z (2008) J Radioanal Nucl Chem 276:273

    CAS  Google Scholar 

  • Phillips GW, Marlow KW (1976a) Nucl Instrum Meth 72:125

    Google Scholar 

  • Phillips GW, Marlow KW (1976b) Nucl Instrum Meth 137:525

    CAS  Google Scholar 

  • Postma H, Schillebeeckx P (2005) J Radioanal Nucl Chem 265:297

    CAS  Google Scholar 

  • Postma H, Perego RC, Schillebeeckx P, Siegler P, Borella A (2007) Neutron resonance capture analysis and applications. Springer, Berlin, pp 95–99

    Google Scholar 

  • Rasmussen NC, Hukai Y, Inouye T, Orphan VJ (1969) Thermal neutron capture gamma-ray spectra of the elements, Report AFCRL-69-0071. Massachusetts Institute of Technology, Boston

    Google Scholar 

  • Reijonen J, Leung KN, Firestone RB, English JA, Perry DL, Smith A, Gicquel F, Sun M, Koivunoro H, Lou TP, Bandong B, Garabedian G, Révay Z, Szentmiklosi L, Molnar G (2004) Nucl Instrum Meth At 522:598

    CAS  Google Scholar 

  • Révay Z (2005) J Radioanal Nucl Chem 264:283

    Google Scholar 

  • Révay Z (2006) Nucl Instrum Meth A564:688

    Google Scholar 

  • Révay Z (2008) J Radioanal Nucl Chem 276:825

    Google Scholar 

  • Révay Z (2009) Anal Chem 81:6851

    Google Scholar 

  • Révay Z, Molnár GL, Belgya T, Kasztovszky Z, Firestone RB (2000) J Radioanal Nucl Chem 244:383

    Google Scholar 

  • Révay Z, Molnár GL, Belgya T, Kasztovszky Z, Firestone RB (2001a) J Radioanal Nucl Chem 248:395

    Google Scholar 

  • Révay Z, Belgya T, Ember PP, Molnár GL (2001b) J Radioanal Nucl Chem 248:401

    Google Scholar 

  • Révay Z, Molnár GL, Belgya T, Kasztovszky Z (2003) J Radioanal Nucl Chem 257:561

    Google Scholar 

  • Révay Z, Belgya T, Kasztovszky Z, Weil JL, Molnár GL (2004) Nucl Instrum Meth B 213:385

    Google Scholar 

  • Révay Z, Belgya T, Szentmiklósi L, Molnár GL (2005) J Radioanal Nucl Chem 264:277

    Google Scholar 

  • Révay Z, Belgya T, Molnár GL, Rausch H, Braun T (2006) Chem Phys Lett 423:450

    Google Scholar 

  • Révay Z, Harrison RK, Alvarez E, Biegalski SR, Landsberger S (2007) Nucl Instrum Meth A577:611

    Google Scholar 

  • Révay Z, Belgya T, Szentmiklosi L, Kis Z (2008a) J Radioanal Nucl Chem 278:643

    Google Scholar 

  • Révay Z, Belgya T, Szentmiklosi L, Kis Z, Wootsch A, Teschner D, Swoboda M, Schlogl R, Borsodi J, Zepernick R (2008b) Anal Chem 80:6066

    Google Scholar 

  • Rios-Martinez C, Unlu K, Wehring BW (1998) J Radioanal Nucl Chem 234:119

    CAS  Google Scholar 

  • Robinson JA, Hartman MR, Reese SR (2009) J Radioanal Nucl Chem. doi:10.1007/s10967-009-0358-2

    Google Scholar 

  • Rogante M, De Marinis G, Kasztovszky Z, Milazzo F (2007) Nuovo Cimento C 30:113

    Google Scholar 

  • Rossbach M (1991) Anal Chem 63:2156

    CAS  Google Scholar 

  • Sah RN, Brown PH (1997) Microchem J 56:285

    CAS  Google Scholar 

  • Sajo-Bohus LS, de Antczak MMM, Greaves ED, Antczak A, Bermudez J, Kasztovszky Z, Poirier T, Simonits A (2005) J Radioanal Nucl Chem 265:247

    Google Scholar 

  • Sajo-Bohus L, Mackowiak deAntczak, M. M., Kastovszky Z, Greaves ED, Antczak A, Simonits A, Palacios D, Millan B (2006) J Phys Conference Series 41:8

    Google Scholar 

  • Sakai Y, Kubo MK, Matsue H, Yonezawa C (2005) J Radioanal Nucl Chem 265:287

    CAS  Google Scholar 

  • Sandor Z, Tolgyesi S, Gresits I, Kasztovszky Z (2002) J Radioanal Nucl Chem 254:283

    CAS  Google Scholar 

  • Segawa M, Matsue H, Sekiya Y, Yamada S, Shinohara T, Oku T, Sasao H, Suzuki J, Shimizu HM (2008) J Radioanal Nucl Chem 278:647

    CAS  Google Scholar 

  • Sieber JR, Mackey EA, Marlow AF, Paul R, Martin R (2007) Powder Diffr 22:146

    CAS  Google Scholar 

  • Stone CA, Blackburn DH, Kauffman DA, Cranmer DC, Olmez I (1994) Nucl Instrum Meth A349:515

    Google Scholar 

  • Sueki K, Kobayashi K, Sato W, Nakahara H, Tomizawa T (1996) Anal Chem 68:2203

    CAS  Google Scholar 

  • Sueki K, Oura Y, Sato W, Nakahara H, Tomizawa T (1998) J Radioanal Nucl Chem 234:27

    CAS  Google Scholar 

  • Sun G, Park C, Choi H (2008) J Radioanal Nucl Chem 278:637

    CAS  Google Scholar 

  • Sun GM, Byun SH, Choi HD (2003) J Radioanal Nucl Chem 256:541

    CAS  Google Scholar 

  • Sun GM, Park CS, Choi HD (2005) J Radioanal Nucl Chem 264:603

    CAS  Google Scholar 

  • Swider JR, Walters WB (2004) Nucl Instrum Meth B 226:659

    CAS  Google Scholar 

  • Swider JR, Mustillo DM, Conticchio LF, Walters WB, Paul RL, Lindstrom RM (1994) In: Kern J (ed) Proceedings of the 8th international symposium on capture gamma-ray spectroscopy and related topic, World Scientific, Singapore, pp 335–337

    Google Scholar 

  • Szakmany G, Kasztovszky Z (2004) Eur J Mineralog 16:285

    CAS  Google Scholar 

  • Szentmiklosi L, Belgya T, Révay Z (2005) J Radioanal Nucl Chem 264:229

    CAS  Google Scholar 

  • Szentmiklosi L, Révay Z, Belgya T (2006a) Nucl Instrum Meth At 564:655

    CAS  Google Scholar 

  • Szentmiklosi L, Révay Z, Chobola R, Mell P, Szakacs S, Kasa I (2006b) J Radioanal Nucl Chem 267:415

    CAS  Google Scholar 

  • Szentmiklosi L, Gmeling K, Révay Z (2007a) J Radioanal Nucl Chem 271:447

    CAS  Google Scholar 

  • Szentmiklosi L, Révay Z, Belgya T (2007b) Nucl Instrum Meth B 263:90

    CAS  Google Scholar 

  • Szentmiklosi L, Révay Z, Belgya T, Simonits A, Kis Z (2008) J Radioanal Nucl Chem 278:657

    CAS  Google Scholar 

  • Teschner D, Borsodi J, Wootsch A, Révay Z, Havecker M, Knop-Gericke A, Jackson SD, Schlogl R (2008) Science 320:86

    CAS  Google Scholar 

  • Toh Y, Oshima M, Kimura A, Koizumi M, Furutaka K, Hatsukawa Y, Goto J (2008) J Radioanal Nucl Chem 278:685

    CAS  Google Scholar 

  • Tompa K, Banki P, Bokor M, Lasanda G, Vasaros L (2003) J Alloy Compd 350:52

    CAS  Google Scholar 

  • Turhan S, Yucel H, Demirbas A (2004) J Radioanal Nucl Chem 262:661

    CAS  Google Scholar 

  • Unlu K, Rios-Martinez C (2005) J Radioanal Nucl Chem 265:329

    Google Scholar 

  • van den Berg AWC, Pescarmona PP, Schoonman J, Jansen JC (2007) Chem Eur J 13:3590

    Google Scholar 

  • Westcott CH (1955) J Nucl Energy 2:59

    Google Scholar 

  • Wehring BW, Unlu K, Rios-Martinez C (1997) Appl Rad Isotopes 48:1343

    CAS  Google Scholar 

  • Wilhelm M, Eberth J, Pascovici G, Radermacher E, Thomas HG, vonBrentano P, Prade H, Lieder RM (1996) Nucl Instrum Meth A381:462

    Google Scholar 

  • Yamauchi S, Sakai Y, Watanabe Y, Kubo MK, Matsue H (2005) In: Proceedings of the 55th annual meeting of the Japan-Wood-Research-Society, Kyoto, Japan, March. Springer, Tokyo, pp 279–281

    Google Scholar 

  • Yamazaki S, Oura Y, Ebihara M (2007) J Radioanal Nucl Chem 272:353

    CAS  Google Scholar 

  • Yonezawa C, Wood AKH, Magara M, Sawahata S, Hoshi M, Ito Y, Tachikawa E (1993) Prompt gamma-ray analysis using JRR-3M cold and thermal neutron guide beams. In: Proceedings of the 5th international symposium advanced nuclear energy research (JAERI-M 93-228), Mito, Japan, vol 2. JAERI, Tokai, pp 854–861

    Google Scholar 

  • Yonezawa C (1999) Biol Trace Elem Res 71–2:407

    Google Scholar 

  • Yonezawa C (2002) Bunseki Kagaku 51:61

    CAS  Google Scholar 

  • Young SK, Trevino SF, Tan NCB, Paul RL (2003) J Polym Sci B41:1485

    Google Scholar 

  • Zeisler R, Lamaze GP, Chen-Mayer HH (2001) J Radioanal Nucl Chem 248:35

    CAS  Google Scholar 

  • Zeisler R, James WD, Mackey EA, Spatz RO, Greenberg RR (2008) J Radioanal Nucl Chem 278:783

    CAS  Google Scholar 

  • Zhang L, Ni B, Tian W, Huang D, Zhang G, Liu C, Wang P, Liu L, Li D (2005) Atom Energy Sci Tech 39:282

    CAS  Google Scholar 

  • Zhao L, Robinson L (2009) J Radioanal Nucl Chem 282:151

    CAS  Google Scholar 

  • Zhao L, Robinson L, Mackey EA, Paul RL, Greenberg RR (2008) J Radioanal Nucl Chem 277:275

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Révay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Révay, Z., Lindstrom, R.M., Mackey, E.A., Belgya, T. (2011). Neutron-Induced Prompt Gamma Activation Analysis (PGAA). In: Vértes, A., Nagy, S., Klencsár, Z., Lovas, R.G., Rösch, F. (eds) Handbook of Nuclear Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0720-2_31

Download citation

Publish with us

Policies and ethics

Navigation