Log in

Effects of urea and glycerol mixture on morphology and molecular mobility in thermoplastic starch/montmorillonite-type nanofiller composites studied using XRD and NMR

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Starch-based polymer systems have attracted a great deal of interest as a potential alternative to conventional plastics for packaging applications. Mechanical and thermal properties of these systems strongly depend on their local structure and molecular dynamics. In this study, the effects of urea and glycerol mixtures on structure and molecular mobility in thermoplastic starch/montmorillonite-type nanofiller composites were investigated using X-ray diffraction and nuclear magnetic resonance spectroscopy (27Al, 13C, and 1H). The X-ray diffraction patterns indicate intercalation of plasticizer molecules and starch chains inside the montmorillonite particles in all composites. The urea crystallites in most urea-containing composites and starch retrogradation in all composites with glycerol-plasticized starch were also deduced from X-ray diffractions. Changes in the 27Al NMR spectra measured on the studied samples were related to the amount of plasticizer molecules available for interaction with exfoliated and reassembled MMT platelets. The 1H NMR spectra shapes indicate that increased glycerol content results in greater molecular mobility, which causes starch retrogradation during sample ageing, inferred from T1(13C) spin–lattice relaxation times and the change in C1 resonance shape in the 13C NMR spectra respectively. Starch retrogradation was not detected in the composites with urea-plasticized starch due to their rigid structure reflected in relatively long T1(13C) spin–lattice relaxation times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yu L, Dean K, Li L (2006) Polymer blends and composites from renewable resources. Prog Polym Sci. https://doi.org/10.1016/j.progpolymsci.2006.03.002

    Article  Google Scholar 

  2. Jost V, Stramm C (2015) Influence of plasticizers on the mechanical and barrier properties of cast biopolymer films. J Appl Polym Sci. https://doi.org/10.1002/app.42513

    Article  Google Scholar 

  3. Sanyang ML, Sapuan SM, Jawaid M, Ishak MR, Sahari J (2015) Effect of plasticizer type and concentration on tensile, thermal and barrier properties of biodegradable films based on sugar palm (Arenga pinnata) starch. Polymers. https://doi.org/10.3390/polym7061106

    Article  Google Scholar 

  4. Šoltýs A, Hronský V, Šmídová N, Olčák D, Ivanič F, Chodák I (2019) Solid-state 1H and 13C NMR of corn starch plasticized with glycerol and urea. Eur Polym J. https://doi.org/10.1016/j.eurpolymj.2019.04.042

    Article  Google Scholar 

  5. Ma X, Yu J (2004) Formamide as the plasticizer for thermoplastic starch. J Appl Polym Sci. https://doi.org/10.1002/app.20628

    Article  Google Scholar 

  6. Wang J, Cheng F, Zhu P (2014) Structure and properties of urea-plasticized starch films with different urea contents. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2013.10.050

    Article  PubMed  PubMed Central  Google Scholar 

  7. Šmídová N, Šoltýs A, Hronský V, Olčák D, Popovič Ľ, Chodák I (2021) Aging-induced structural relaxation in cornstarch plasticized with urea and glycerol. J Appl Polym Sci. https://doi.org/10.1002/app.50218

    Article  Google Scholar 

  8. Paluch M, Ostrowska J, Tyński P, Sadurski W, Konkol M (2021) Structural and Thermal Properties of Starch Plasticized with Glycerol/Urea Mixture. J Polym Environ. https://doi.org/10.1007/s10924-021-02235-x

    Article  Google Scholar 

  9. Gamarano DS, Pereira IM, Da Silva MC, Mottin AC, Ayres E (2020) Crystal structure transformations in extruded starch plasticized with glycerol and urea. Polym Bull. https://doi.org/10.1007/s00289-019-02999-2

    Article  Google Scholar 

  10. López C, Medina K, D´Ambrosio R, Michell RM (2021) PLLA and cassava thermoplastic starch blends: crystalinity, mechanical properties, and UV degradation. J Polym Res. https://doi.org/10.1007/s10965-020-02368-y

    Article  Google Scholar 

  11. Fričová O, Kovaľaková M, Hutníková M, Baran A (2020) Influence of aging on molecular motion in PBAT-thermoplastic starch blends studied using solidstate NMR. Int J Polym Anal Charact. https://doi.org/10.1080/1023666X.2020.1783495

    Article  Google Scholar 

  12. López OV, Castillo LA, García MA, Villar MA, Barbosa SE (2015) Food packaging bags based on thermoplastic corn starch reinforced with talc nanoparticles. Food Hydrocoll. https://doi.org/10.1016/j.foodhyd.2014.04.021

    Article  Google Scholar 

  13. Sun Q, ** T, Li Y, **ong L (2014) Characterization of corn starch films reinforced with CaCO3 nanoparticles. PLoS ONE. https://doi.org/10.1371/journal.pone.0106727

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jose J, Al-Harthi MA, AlMa’adeed MAA, Dakua JB, De SK (2015) Effect of graphene loading on thermomechanical properties of poly(vinyl alcohol)/starch blend. J Appl Polym Sci. https://doi.org/10.1002/app.41827

    Article  Google Scholar 

  15. Area MR, Monterol B, Ricol M, Barral L, Bouza R, López J (2020) Properties and behavior under environmental factors of isosorbide-plasticized starch reinforced with microcrystalline cellulose biocomposites. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2020.08.075

    Article  PubMed  Google Scholar 

  16. Balakrishnan P, Geethamma VG, Gopi S, Thomas MG, Kunaver M, Huskić M, Kalarikkal N, Volova T, Rouxel D, Thomas S (2019) Thermal, biodegradation and theoretical perspectives on nanoscale confinement in starch/cellulose nanocomposite modified via green crosslinker. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2019.05.088

    Article  PubMed  Google Scholar 

  17. Ali SS, Tang X, Alavi S, Faubion J (2011) Structure and physical properties of starch/poly vinyl alcohol/sodium montmorillonite nanocomposite films. J Agric Food Chem. https://doi.org/10.1021/jf201119v

    Article  PubMed  Google Scholar 

  18. Derungs I, Rico M, López J, Barral L, Montero B, Bouza R (2021) Influence of the hydrophilicity of montmorillonite on structure and properties of thermoplastic wheat starch/montmorillonite bionanocomposites. Polym Adv Technol. https://doi.org/10.1002/pat.5450

    Article  Google Scholar 

  19. Lin KJ, Jeng US, Lin KF (2011) Adsorption and intercalation processes of ionic surfactants on montmorillonite associated with their ionic charge. Mater Chem Phys. https://doi.org/10.1016/j.matchemphys.2011.07.076

    Article  Google Scholar 

  20. Al-Samhan M, Samuel J, Al-Attar F, Abraham G (2017) Comparative effects of MMT clay modified with two different cationic surfactants on the thermal and rheological properties of polypropylene nanocomposites. J Polym Sci Int. https://doi.org/10.1155/2017/5717968

    Article  Google Scholar 

  21. Chiou JY, Hsu RS, Chiu ChW, Lin JJ (2013) A stepwise mechanism for intercalating hydrophobic organics into multilayered clay nanostructures. RSC Adv. https://doi.org/10.1039/C3RA42037J

    Article  Google Scholar 

  22. Müller CMO, Laurindo JB, Yamashita F (2012) Composites of thermoplastic starch and nanoclays produced by extrusion and thermopressing. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2012.03.035

    Article  PubMed  Google Scholar 

  23. Peidayesh H, Ahmadi Z, Khonakdar HA, Abdouss M, Chodák I (2020) Fabrication and properties of thermoplastic starch/montmorillonite composite using dialdehyde starch as a crosslinker. Polym Int. https://doi.org/10.1002/pi.5955

    Article  Google Scholar 

  24. Mondragón M, Mancilla JE, Rodríguez-González FJ (2008) Nanocomposites from plasticized high-amylopectin, normal and high-amylose maize starches. Polym Eng Sci. https://doi.org/10.1002/pen.21084

    Article  Google Scholar 

  25. Schlemmer D, Angélica RS, Sales MJA (2010) Morphological and thermomechanical characterization of thermoplastic starch/montmorillonite nanocomposites. Compos Struct. https://doi.org/10.1016/j.compstruct.2009.10.034

    Article  Google Scholar 

  26. Ivanič F, Jochec-Mošková D, Janigová I, Chodák I (2017) Physical properties of starch plasticized by a mixture of plasticizers. Eur Polym J. https://doi.org/10.1016/j.eurpolymj.2017.04.006

    Article  Google Scholar 

  27. Torchia DA (1978) The measurement of proton-enhanced carbon-13 T1 values by a method which suppresses artifacts. J Magn Reson. https://doi.org/10.1016/0022-2364(78)90288-3

    Article  Google Scholar 

  28. Chen Q, Hou SS, Schmidt-Rohr K (2004) A simple scheme for probehead background suppression in one-pulse 1H NMR. Solid State Nucl Magn Reson. https://doi.org/10.1016/j.ssnmr.2003.08.002

    Article  PubMed  Google Scholar 

  29. Liao ChY, Chiou JY, Lin JJ (2017) Phase change materials of fatty amine-modified silicate clays of nano layered structures. RSC Adv. https://doi.org/10.1039/C7RA02876H

    Article  Google Scholar 

  30. Huang HH, Shih YCh, Wang L, Lin KF (2019) Boosting the ultra-stable unencapsulated perovskite solar cells by using montmorillonite/CH3NH3PbI3 nanocomposite as photoactive layer. Energy Environ Sci. https://doi.org/10.1039/C8EE02958J

    Article  Google Scholar 

  31. Saha BK, Rose MT, Wong V, Cavagnaro TR, Patti AF (2017) Hybrid brown-coal fertiliser reduces nitrogen loss compared to urea alone. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2017.05.270

    Article  PubMed  Google Scholar 

  32. Mutungi C, Passauer L, Onyango C, Jaros D, Rohm H (2012) Debranched cassava starch crystallinity determination by Raman spectroscopy: Correlation of features in Raman spectra with X-ray diffraction and 13C CP/MAS NMR spectroscopy. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2011.08.032

    Article  PubMed  Google Scholar 

  33. Aouada FA, Mattoso LHC, Longo E (2011) New strategies in the preparation of exfoliated thermoplastic starch–montmorillonite nanocomposites. Ind Crop Prod. https://doi.org/10.1016/j.indcrop.2011.05.003

    Article  Google Scholar 

  34. Ashbrook SE, Duer MJ (2006) Structural information from quadrupolar nuclei in solid state NMR. Concepts Magn Reson. https://doi.org/10.1002/cmr.a.20053

    Article  Google Scholar 

  35. Müller D, Gessner W, Behrens HJ, Scheler G (1981) Determination of the aluminum coordination in aluminum-oxygen compounds by solid-state high-resolution 27Al NMR. Chem Phys Lett. https://doi.org/10.1016/0009-2614(81)85288-8

    Article  Google Scholar 

  36. Krupskaya VV, Zakusin SV, Tyupina EA, Dorzhieva OV, Zhukhlistov AP, Belousov PE, Timofeeva M (2017) Experimental study of montmorillonite structure and transformation of its properties under treatment with inorganic acid solutions. Minerals. https://doi.org/10.3390/min7040049

    Article  Google Scholar 

  37. Marsh A, Heath A, Patureau P, Evernden M, Walker P (2018) Alkali activation behaviour of un-calcined montmorillonite and illite clay minerals. Appl Clay Sci. https://doi.org/10.1016/j.clay.2018.09.011

    Article  Google Scholar 

  38. Ashbrook SE, Dawson DM (2016) NMR spectroscopy of minerals and allied materials. Nucl Magn Reson. https://doi.org/10.1039/9781782624103-00001

    Article  Google Scholar 

  39. Kentgens APM (1997) A practical guide to solid-state NMR of half-integer quadrupolar nuclei with some applications to disordered systems. Geoderma. https://doi.org/10.1016/S0016-7061(97)00056-6

    Article  Google Scholar 

  40. Schroeder PA, Pruett RJ (1996) Fe ordering in kaolinite; insights from 29Si and 27Al MAS NMR spectroscopy. Am Mineral. https://doi.org/10.2138/am-1996-1-204

    Article  Google Scholar 

  41. Negron A, Ramos S, Blumenfeld AL, Pacheo G, Fripiat JS (2002) On the structural stability of montmorillonite submitted to heavy g-irradiation. Clay Clay Miner. https://doi.org/10.1346/000986002761002649

    Article  Google Scholar 

  42. Bogracheva TY, Morris VJ, Ring SG, Hedley CL (1998) The granular structure of C-type pea starch and its role in gelatinization. Biopolymers. https://doi.org/10.1002/(SICI)1097-0282(19980405)45:4%3c323::AID-BIP6%3e3.0.CO;2-N

    Article  Google Scholar 

  43. Tan I, Flanagan BM, Halley PJ, Whittaker AK, Gidley MJ (2007) A method for estimating the nature and relative proportions of amorphous, single, and double-helical components in starch granules by 13C CP/MAS NMR. Biomacromol. https://doi.org/10.1021/bm060988a

    Article  Google Scholar 

  44. **aofei M, Jiugao Y, ** F (2004) Urea and formamide as a mixed plasticizer for thermoplastic starch. Polym Int. https://doi.org/10.1002/pi.1580

    Article  Google Scholar 

  45. **aofei M, Yu J (2004) The effects of plasticizers containing amide groups on the properties of thermoplastic starch. Starch − Starke. https://doi.org/10.1002/star.200300256

    Article  Google Scholar 

  46. Reich HJ (2017) Relaxation in NMR spectroscopy. University of Wisconsin, Madison

    Google Scholar 

  47. Paris M, Bizot H, Emery J, Buzaré J, Buléon A (2001) NMR local range investigations in amorphous starchy substrates: II-Dynamical heterogeneity probed by 1H/13C magnetization transfer and 2D WISE solid state NMR. Int J Biol Macromol. https://doi.org/10.1016/S0141-8130(01)00161-1

    Article  PubMed  Google Scholar 

  48. Volant C, Gilet A, Beddiaf F, Collinet-Fressancourt M, Falourd X, Descamps N, Wiatz V, Bricout H, Tilloy S, Monflier E, Quettier C, Mazzah A, Rolland-Sabaté A (2020) Multiscale structure of starches grafted with hydrophobic groups: a new analytical strategy. Molecules. https://doi.org/10.3390/molecules25122827

    Article  PubMed  PubMed Central  Google Scholar 

  49. Johnston DC (2006) Stretched exponential relaxation arising from a continuous sum of exponential decays. Phys Rev B. https://doi.org/10.1103/PhysRevB.74.184430

    Article  Google Scholar 

  50. Fričová O, Hutníková M, Peidayesh H (2021) DMA study of thermoplastic starch/montmorillonite nanocomposites. AIP Conf Proc. https://doi.org/10.1063/5.0067007

  51. Poirier-Brulez F, Roudaut G, Champion D, Tanguy M, Simatos D (2006) Influence of sucrose and water content on molecular mobility in starch-based glasses as assessed through structure and secondary relaxation. Biopolymers. https://doi.org/10.1002/bip.20358

    Article  PubMed  Google Scholar 

  52. Baran A, Vrábel P, Kovaľaková M, Hutníková M, Fričová O, Olčák D (2020) Effects of sorbitol and formamide plasticizers on molecular motion in corn starch studied using NMR and DMTA. J Appl Polym Sci. https://doi.org/10.1002/app.48964

    Article  Google Scholar 

  53. Peng J, Yi H, Song S, Zhan W, Zhao Y (2019) Driving force for the swelling of montmorillonite as affected by surface charge and exchangeable cations: A molecular dynamic study. Results Phys. https://doi.org/10.1016/j.rinp.2018.11.011

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Slovak Grant Agency through VEGA project no. 1/0751/21.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Baran.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baran, A., Fričová, O., Vrábel, P. et al. Effects of urea and glycerol mixture on morphology and molecular mobility in thermoplastic starch/montmorillonite-type nanofiller composites studied using XRD and NMR. J Polym Res 29, 257 (2022). https://doi.org/10.1007/s10965-022-03110-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03110-6

Keywords

Navigation