Log in

A study on the synergetic effects of self/induced crystallization and nanoparticles on the mechanical properties of semi-crystalline polymer nanocomposites: experimental and analytical approaches

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

This work investigates the effects of nanoparticle content, aggregation/agglomeration, polymer/particle interphase, and crystallinity on the mechanical properties of high-density polyethylene (HDPE) nanocomposites. Different samples of HDPE nanocomposites, containing 0.5, 0.75, and 2 wt% of pure and surface-modified silica nanoparticles were prepared by melt-mixing method. The pure silica nanoparticles (PSN) and surface-modified silica nanoparticles with (3-aminopropyl) tri-ethoxy-silane (AMS) were characterized with field emission scanning electron microscopy (FESEM) and Fourier-transform infrared (FTIR) spectra. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) were used to estimate the crystallinity and crystal size of the nanocomposite samples. Finally, tensile testing was performed on the nanocomposites to establish the relationship between mechanical properties and nanoparticle loading, and surface modification. The results indicate that the crystallinity and elastic modulus of the nanocomposites increased with increasing nanoparticle content. Moreover, the Gutzow–Dobreva theory was applied to approximate the degree of the induced crystallinity in each sample. A mechanical model based on two equivalent box models (EBM) was proposed to determine the crystalline, amorphous phase modulus, thickness and tensile modulus of the polymer/particle interphase region, which showed a decreasing trend with the nanoparticles content and indicated that this region was thicker for the HDPE/AMS relative to HDPE/PSN. Also, it was found that nanoparticles affected both crystalline and amorphous sections, which their effect on the crystals was more significant and presence of the well-dispersed nanoparticles in the amorphous section substantially enhanced their performance against the exerted stress.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data, models, and code generated or used during the study appear in the submitted article.

References

  1. Scott G (2002) Degradable polymers: principles and applications, 2nd edn. Springer, Dordrecht

    Book  Google Scholar 

  2. Yu L, Dean K, Li L (2006) Polymer blends and composites from renewable resources. Prog Polym Sci 31:576–602

    Article  CAS  Google Scholar 

  3. Shelesh-Nezhad K, Orang H, Motallebi M (2012). In: Dogan F (ed) Polypropylene. IntechOpen, London. https://doi.org/10.5772/2229

    Chapter  Google Scholar 

  4. Kim DH, Fasulo PD, Rodgers WR, Paul DR (2008) Effect of the ratio of maleated polypropylene to organoclay on the structure and properties of TPO-based nanocomposites. Part II: thermal expansion behavior. Polymer 49:2492–2506

    Article  CAS  Google Scholar 

  5. Spencer MW, Cui L, Yoo Y, Paul DR (2010) Morphology and properties of nanocomposites based on HDPE/HDPE-g-MA blends. Polymer 51:1056–1070

    Article  CAS  Google Scholar 

  6. Lisuzzo L, Cavallaro G, Milioto S, Lazzara G (2021) Halloysite nanotubes filled with MgO for paper reinforcement and deacidification. Appl Clay Sci 213:106231

    Article  CAS  Google Scholar 

  7. Guadagno L, Naddeo C, Raimondo M, Barra G, Vertuccio L, Russo S, Lafdi K, Tucci V, Spinelli G, Lamberti P (2017) Influence of carbon nanoparticles/epoxy matrix interaction on mechanical, electrical and transport properties of structural advanced materials. Nanotechnology 28:094001

    Article  PubMed  Google Scholar 

  8. Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49:3187–3204

    Article  CAS  Google Scholar 

  9. Roy A, Joshi M, Butola B (2019) Antimicrobial performance of polyethylene nanocomposite monofilaments reinforced with metal nanoparticles decorated montmorillonite. Colloids Surf B 178:87–93

    Article  CAS  Google Scholar 

  10. Pavoski G, Kalikoski R, Souza G, Brum LFW, Dos Santos C, Markeb AA, Dos Santos JHZ, Font X, dell’Erba I, Galland GB (2018) Synthesis of polyethylene/silica-silver nanocomposites with antibacterial properties by in situ polymerization. Eur Polym J 106:92–101

    Article  CAS  Google Scholar 

  11. Yang Z, Peng H, Wang W, Liu T (2010) Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J Appl Polym Sci 116:2658–2667

    CAS  Google Scholar 

  12. Zhang MC, Guo B-H, Xu J (2017) A review on polymer crystallization theories. Crystals 7:4

    Article  CAS  Google Scholar 

  13. De Gennes PG (1987) Polymers at an interface; a simplified view. Adv Colloid Interface Sci 27:189–209

    Article  Google Scholar 

  14. Lin Y, Du W, Tu D, Zhong W, Du Q (2005) Space charge distribution and crystalline structure in low density polyethylene (LDPE) blended with high density polyethylene (HDPE). Polym Int 54:465–470

    Article  CAS  Google Scholar 

  15. Lisuzzo L, Hueckel T, Cavallaro G, Sacanna S, Lazzara G (2021) Pickering emulsions based on wax and halloysite nanotubes: an ecofriendly protocol for the treatment of archeological woods. ACS Appl Mater Interfaces 13:1651–1661

    Article  CAS  PubMed  Google Scholar 

  16. Chrissafis K, Paraskevopoulos KM, Pavlidou E, Bikiaris D (2009) Thermal degradation mechanism of HDPE nanocomposites containing fumed silica nanoparticles. Thermochim Acta 485:65–71

    Article  CAS  Google Scholar 

  17. Grigoriadou I, Paraskevopoulos KM, Chrissafis K, Pavlidou E, Stamkopoulos T-G, Bikiaris D (2011) Effect of different nanoparticles on HDPE UV stability. Polym Degrad Stabil 96:151–163

    Article  CAS  Google Scholar 

  18. Lisuzzo L, Caruso MR, Cavallaro G, Milioto S, Lazzara G (2021) Hydroxypropyl cellulose films filled with halloysite nanotubes/wax hybrid microspheres. Ind Eng Chem Res 60:1656–1665

    Article  CAS  Google Scholar 

  19. Jancar J, Douglas JF, Starr FW, Kumar SK, Cassagnau P, Lesser AJ, Sternstein SS, Buehler MJ (2010) Current issues in research on structure–property relationships in polymer nanocomposites. Polymer 51:3321–3343

    Article  CAS  Google Scholar 

  20. Ader F, Sharifzadeh E (2021) Rheological and mechanical behavior of blend-based polymer nanocomposites containing Janus and non-Janus silica nanoparticles. Colloid Polym Sci 299:1843–1852

    Article  CAS  Google Scholar 

  21. Rao KS, El-Hami K, Kodaki T, Matsushige K, Makino K (2005) A novel method for synthesis of silica nanoparticles. J Colloid Interface Sci 289:125–131

    Article  CAS  PubMed  Google Scholar 

  22. Tohfegar E, Moghaddas JS, Sharifzadeh E, Esmaeilzadeh-Dilmaghani S (2019) Synthesis and characterization of waterglass-based silica aerogel under heat treatment for adsorption of nitrate from water: batch and column studies. Iran J Chem Eng (IJChE) 16:53–72

    Google Scholar 

  23. Sharifzadeh E, Salami-Kalajahi M, Hosseini MS, Aghjeh MKR (2017) Synthesis of silica Janus nanoparticles by buoyancy effect-induced desymmetrization process and their placement at the PS/PMMA interface. Colloid Polym Sci 295:25–36

    Article  CAS  Google Scholar 

  24. Wu Z, **ang H, Kim T, Chun M-S, Lee K (2006) Surface properties of submicrometer silica spheres modified with aminopropyltriethoxysilane and phenyltriethoxysilane. J Colloid Interface Sci 304:119–124

    Article  CAS  PubMed  Google Scholar 

  25. Barus S, Zanetti M, Lazzari M, Costa L (2009) Preparation of polymeric hybrid nanocomposites based on PE and nanosilica. Polymer 50:2595–2600

    Article  CAS  Google Scholar 

  26. Tanniru M, Yuan Q, Misra RDK (2006) On significant retention of impact strength in clay–reinforced high-density polyethylene (HDPE) nanocomposites. Polymer 47:2133–2146

    Article  CAS  Google Scholar 

  27. Hua YQ, Zhang Y-Q, Wu L-B, Huang Y-Q, Wang G-Q (2005) Mechanical and optical properties of polyethylene filled with nano-SiO2. J Macromol Sci Phys 44:149–159

    Article  Google Scholar 

  28. Li D, Zhou L, Wang X, He L, Yang X (2019) Effect of crystallinity of polyethylene with different densities on breakdown strength and conductance property. Materials 12:1746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang Y, Yu J, Zhou C, Chen L, Hu Z (2010) Preparation, morphology, and adhesive and mechanical properties of ultrahigh-molecular-weight polyethylene/SiO2 nanocomposite fibers. Polym Compos 31:684–690

    CAS  Google Scholar 

  30. Zare Y (2016) Study of nanoparticles aggregation/agglomeration in polymer particulate nanocomposites by mechanical properties. Compos Part A Appl Sci 84:158–164

    Article  CAS  Google Scholar 

  31. Sharifzadeh E, Cheraghi K (2021) Temperature-affected mechanical properties of polymer nanocomposites from glassy-state to glass transition temperature. Mech Mater 160:103990

    Article  Google Scholar 

  32. Kluth GJ, Sung MM, Maboudian R (1997) Thermal behavior of alkylsiloxane self-assembled monolayers on the oxidized Si (100) surface. Langmuir 13:3775–3780

    Article  CAS  Google Scholar 

  33. Zhang D, Hegab HE, Lvov Y, Snow LD, Palmer J (2016) Immobilization of cellulase on a silica gel substrate modified using a 3-APTES self-assembled monolayer. Springerplus 5:48

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ishida H, Chiang C-H, Koenig JL (1982) The structure of aminofunctional silane coupling agents: 1. γ-Aminopropyltriethoxysilane and its analogues. Polymer 23:251–257

    Article  CAS  Google Scholar 

  35. Pena-Alonso R, Rubio F, Rubio J, Oteo JL (2007) Study of the hydrolysis and condensation of γ-Aminopropyltriethoxysilane by FT-IR spectroscopy. J Mater Sci 42:595–603

    Article  CAS  Google Scholar 

  36. Dobreva A, Gutzow I (1991) Kinetics of non-isothermal overall crystallization in polymer melts. Cryst Res Technol 26:863–874

    Article  CAS  Google Scholar 

  37. Ou CF, Ho MT, Lin JR (2003) The nucleating effect of montmorillonite on crystallization of PET/montmorillonite nanocomposite. J Polym Res 10:127–132

    Article  CAS  Google Scholar 

  38. Gasperini A, Sivula K (2013) Effects of molecular weight on microstructure and carrier transport in a semicrystalline poly(thieno) thiophene. Macromolecules 46:9349–9358

    Article  CAS  Google Scholar 

  39. Li H, Liu J, Liang X, Hou W, Tao X (2014) Enhanced visible light photocatalytic activity of bismuth oxybromide lamellas with decreasing lamella thicknesses. J Mater Chem A 2:8926–8932

    Article  CAS  Google Scholar 

  40. Crist B, Fisher CJ, Howard PR (1989) Mechanical properties of model polyethylenes: tensile elastic modulus and yield stress. Macromolecules 22:1709–1718

    Article  CAS  Google Scholar 

  41. Polińska M, Rozanski A, Galeski A, Bojda J (2021) The modulus of the amorphous phase of semicrystalline polymers. Macromolecules 54:9113–9123

    Article  Google Scholar 

  42. Sharifzadeh E, Mohammadi R (2021) Temperature-/frequency-dependent complex viscosity and tensile modulus of polymer nanocomposites from the glassy state to the melting point. Polym Eng Sci 61:2600–2615

    Article  CAS  Google Scholar 

  43. Sharifzadeh E (2021) Evaluating the dependency of polymer/particle interphase thickness to the nanoparticles content, aggregation/agglomeration factor and type of the exerted driving force. Iran Polym J 30:1063–1072

    Article  CAS  Google Scholar 

  44. Acres RG, Ellis AV, Alvino J, Lenahan CE, Khodakov DA, Metha GF, Andersson GG (2012) Molecular structure of 3-aminopropyltriethoxysilane layers formed on silanol-terminated silicon surfaces. J Phys Chem C 116:6289–6297

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SH: Performed the experiments, analyzed the data, wrote the draft version of the manuscript. FR: Developed and supervised the research, performed the experimental preparation, analyzed all characterization data; revised the manuscript. ES: Developed the research, performed the experimental preparation, analyzed all characterization data; revised the manuscript. All authors discussed the results and contributed to the final manuscript.

Corresponding authors

Correspondence to Farshad Rahimpour or Esmail Sharifzadeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest for the submitted work.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5007 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hojatzadeh, S., Rahimpour, F. & Sharifzadeh, E. A study on the synergetic effects of self/induced crystallization and nanoparticles on the mechanical properties of semi-crystalline polymer nanocomposites: experimental and analytical approaches. Iran Polym J 32, 543–555 (2023). https://doi.org/10.1007/s13726-023-01144-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-023-01144-1

Keywords

Navigation