Log in

Construction of an Off-On Fluorescence System Based on Carbon Dots for Trace Pyrophosphate Sensing

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A novel and simple fluorescence Off-On system is proposed for selective pyrophosphate (PPi) sensing in an aqueous solution. The method is constructed based on the strong blue emission of carbon dots (CDs) owing to its outstanding photoluminescence and easy synthesis, which has shown exciting potential in analytical and biological field. The fluorescence of CDs can be remarkably quenched by some transition metal ions such as Cu2+, Ni2+, Mn2+ and Co2+ due to the coordination reaction between metal ions and the carboxylic groups on the surface of CDs. When PPi was introduced to CDs-metal ion system the fluorescence of CDs was recovered regularly. The increment of fluorescence intensity was proportional with the concentration of PPi in the range of 1–200 μM and correspondingly the limit of detection was calculated as 0.32 μM according to the recommendation of IUPAC as 3.29 S B/m. The possible mechanism was discussed for the detection of PPi and the quenching reaction between CDs and metal ions. Furthermore, the proposed system was successfully used to monitor the content of PPi in water samples from artificial wetland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang YH, Shen P, Li CY, Wang YY, Liu ZH (2012) Upconversion fluorescence resonance energy transfer based biosensor for ultrasensitive detection of matrix metalloproteinase-2 in blood. Anal Chem 84:1466

    Article  CAS  PubMed  Google Scholar 

  2. Michalet X, Pinaud FF, Bentolila LA et al (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Kirchner C, Liedl T, Kudera S et al (2005) Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 5(2):331

    Article  CAS  PubMed  Google Scholar 

  4. Yu P, Wen XM, Toh Y-R, Tang J (2012) Temperature-dependent fluorescence in carbon dots. J Phys Chem C 116:25552

    Article  CAS  Google Scholar 

  5. Wang X, Cao L, Yang ST et al (2010) Bandgap-like strong fluorescence in functionalized carbon nanoparticles. Angew Chem Int Ed 49(31):5310

    Article  CAS  Google Scholar 

  6. Baker SN, Baker GA (2010) Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed 49(38):6726

    Article  CAS  Google Scholar 

  7. Xu XY, Ray R, Gu YL et al (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126(40):12736

    Article  CAS  PubMed  Google Scholar 

  8. Li HT, Kang ZH, Liu Y, Lee S-T (2012) Carbon nanodots: synthesis, properties and applications. J Mater Chem 22:24230

    Article  CAS  Google Scholar 

  9. Wang YL, Anilkumar P, Cao L et al (2011) Carbon dots of different composition and surface functionalization: cytotoxicity issues relevant to fluorescence cell imaging. Exp Biol Med 236:1231

    Article  CAS  Google Scholar 

  10. Huang J, Deming CP, Song Y, Kang XW, Zhou ZY, Chen SW (2012) Chemical analysis of surface oxygenated moieties of fluorescent carbon nanoparticles. Nanoscale 4:1010

    Article  CAS  PubMed  Google Scholar 

  11. Loh KP, Bao QL, Eda G, Chhowalla M (2010) Graphene oxide as a chemically tunable platform for optical applications. Nat Chem 2:1015

    Article  CAS  PubMed  Google Scholar 

  12. Li HL, Zhang YW, Wang L, Tian JQ, Sun XP (2011) Nucleic acid detection using carbon nanoparticles as a fluorescent sensing platform. Chem Commun 47(3):961

    Article  CAS  Google Scholar 

  13. Liu JH, Li JS, Jiang Y, Yang S, Tan WH, Yang RH (2011) Combination of π–π stacking and electrostatic repulsion between carboxylic carbon nanoparticles and fluorescent oligonucleotides for rapid and sensitive detection of thrombin. Chem Commun 47(40):11321

    Article  CAS  Google Scholar 

  14. Zhou L, Lin YH, Huang ZZ, Ren JS, Qu XG (2012) Carbon nanodots as fluorescence probes for rapid, sensitive, and label-free detection of Hg2+ and biothiols in complex matrices. Chem Commun 48(8):1147

  15. Shi WB, Wang QL, Long YJ et al (2011) Carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chem Commun 47:6695

    Article  CAS  Google Scholar 

  16. Zhao HX, Liu LQ, Liu ZD, Wang Y, Zhao XJ, Huang CZ (2011) Highly selective detection of phosphate in very complicated matrixes with an off–on fluorescent probe of europium-adjusted carbon dots. Chem Commun 47:2604

    Article  CAS  Google Scholar 

  17. Dong YQ, Li GL, Zhou NN, Wang RX, Chi YW, Chen GN (2012) Graphene quantum dot as a green and facile sensor for free chlorine in drinking water. Anal Chem 84:8378

    Article  CAS  PubMed  Google Scholar 

  18. Lin Z, Xue W, Chen H, Lin JM (2011) Peroxynitrous-acid-induced chemiluminescence of fluorescent carbon dots for nitrite sensing. Anal Chem 83(21):8245

    Article  CAS  PubMed  Google Scholar 

  19. Li HL, Zhai JF, Sun XP (2011) Sensitive and selective detection of silver(I) ion in aqueous solution using carbon nanoparticles as a cheap, effective fluorescent sensing platform. Langmuir 27(8):4305

  20. Li HL, Zhai JF, Tian JQ, Luo YL, Sun XP (2011) Carbon nanoparticle for highly sensitive and selective fluorescent detection of mercury(II) ion in aqueous. Biosens Bioelectron 26:4656

    Article  CAS  PubMed  Google Scholar 

  21. Huebner PWA, Milburn RM (1980) Hydrolysis of pyrophosphate to orthophosphate promoted by cobalt(III). Evidence for the role of polynuclear species. Inorg Chem 19(5):1267

    Article  CAS  Google Scholar 

  22. Terkeltaub R (2006) Physiologic and pathologic functions of the NPP nucleotide pyrophosphatase/phosphodiesterase family focusing on NPP1 in calcification. Purinergic Signalling 2:371

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Ronaghi M, Uhlén M, Nyrén P (1998) A sequencing method based on real-time pyrophosphate. Science 281(5375):363

    Article  CAS  PubMed  Google Scholar 

  24. Kim SK, Lee DH, Hong J-I, Yoon J (2009) Chemosensors for pyrophosphate. Acc Chem Res 42(1):23

    Article  CAS  PubMed  Google Scholar 

  25. Kruppa M, König B (2006) Reversible coordinative bonds in molecular recognition. Chem Rev 106(9):3520

    Article  CAS  PubMed  Google Scholar 

  26. Mikata Y, Ugai A, Ohnishi R, Konno H (2013) Quantitative fluorescent detection of pyrophosphate with quinoline-ligated dinuclear zinc complexes. Inorg Chem 52(18):10223

    Article  CAS  PubMed  Google Scholar 

  27. Bhowmik S, Ghosh BN, Marjomäki V, Rissanen K (2014) Nanomolar pyrophosphate detection in water and in a self-assembled hydrogel of a simple terpyridine-Zn2+ complex. J Am Chem Soc 136(15):5543

    Article  CAS  PubMed  Google Scholar 

  28. Credo GM, Su X, Wu K et al (2012) Label-free electrical detection of pyrophosphate generated from DNA polymerase reactions on field-effect devices. Analyst 137(6):1351

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Villamil-Ramosa R, Yatsimirsky AK (2011) Selective fluorometric detection of pyrophosphate by interaction with alizarin red S–dimethyltin(IV) complex. Chem Commun 47:2694

    Article  Google Scholar 

  30. Fabbrizzi L, Marcotte N, Stomeo F, Taglietti A (2002) Pyrophosphate detection in water by fluorescence competition assays: inducing selectivity through the choice of the indicator. Angew Chem Int Ed 41(20):3811

    Article  CAS  Google Scholar 

  31. Ganjali MR, Hosseini M, Aboufazeli F, Faridbod F, Goldooz H, Badiei AR (2012) A highly selective fluorescent probe for pyrophosphate detection in aqueous solutions. Luminescence 27(1):20

    Article  CAS  PubMed  Google Scholar 

  32. Su X, Zhang C, **ao XJ, Xu AQ, Xu ZD, Zhao MP (2013) A kinetic method for expeditious detection of pyrophosphate anions at nanomolar concentrations based on a nucleic acid fluorescent sensor. Chem Commun 49(8):798

    Article  CAS  Google Scholar 

  33. Hanshaw RG, Hilkert SM, Jiang H, Smith BD (2004) An indicator displacement system for fluorescent detection of phosphate oxyanions under physiological conditions. Tetrahedron Lett 45(47):8721

    Article  CAS  Google Scholar 

  34. Liu DJ, Credo GM, Su X et al (2011) Surface immobilizable chelator for label-free electrical detection of pyrophosphate. Chem Commun 47:8310

    Article  CAS  Google Scholar 

  35. Ray SC, Saha A, Jana NR, Sarkar R (2009) Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application. J Phys Chem C 113:18546

    Article  CAS  Google Scholar 

  36. Tian L, Ghosh D, Chen W, Pradhan S, Chang X, Chen S (2009) Nanosized carbon particles from natural gas soot. Chem Mater 21:2803

    Article  CAS  Google Scholar 

  37. Lu J, Yang JX, Wang J, Lim A, Wang S, Loh KP (2009) One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano 3:2367

    Article  CAS  PubMed  Google Scholar 

  38. Hu SL, Niu KY, Sun J, Yang J, Zhao NQ, Du XW (2009) One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. J Mater Chem 19:484

    Article  CAS  Google Scholar 

  39. Peng H, Travas-Sejdic J (2009) Simple aqueous solution route to luminescent carbogenic dots from carbohydrates. Chem Mater 21:5563

    Article  CAS  Google Scholar 

  40. Conry RR (2006) Copper: inorganic & coordination chemistry, Wiley. Encycl Inorg Chem

  41. Hu CG, **ao Y, Zhao Y et al (2013) Highly nitrogen-doped carbon capsules: scalable preparation and high-performance applications in fuel cells and lithium ion batteries. Nanoscale 5(7):2726

    Article  CAS  PubMed  Google Scholar 

  42. Zheng HZ, Wang QL, Long YJ, Zhang HJ, Huang XX, Zhu R (2011) Enhancing the luminescence of carbon dots with a reduction pathway. Chem Commun 47:10650

    Article  CAS  Google Scholar 

  43. Zhu SJ, Meng QN, Wang L et al (2013) Highly photoluminescent carbon dots for multicolor patterning, sensors and bioimaging. Angew Chem Int Ed 52:3953

    Article  CAS  Google Scholar 

  44. Shi QQ, Li YH, Xu Y et al (2014) High-yield and high-solubility nitrogen-doped carbon dots: formation, fluorescence mechanism and imaging application. RSC Adv 4:1563

    Article  CAS  Google Scholar 

  45. Fan RJ, Sun Q, Zhang L, Zhang Y, Lu AH (2014) Photoluminescent carbon dots directly derived from polyethylene glycol and their application for cellular imaging. Carbon 71:87

    Article  CAS  Google Scholar 

  46. Wee SS, Ng YH, Ng SM (2013) Synthesis of fluorescent carbon dots via simple acid hydrolysis of bovine serum albumin and its potential as sensitive sensing probe for lead (II) ions. Talanta 116:71

    Article  CAS  PubMed  Google Scholar 

  47. Liu JM, Lin LP, Wang XX et al (2012) Highly selective and sensitive detection of Cu2+ with lysine enhancing bovine serum albumin modified-carbon dots fluorescent probe. Analyst 137:2637

    Article  CAS  PubMed  Google Scholar 

  48. Ikotun OF, Marino N, Kruger PE, Julve M, Doyle RP (2010) Coordination complexes incorporating pyrophosphate: structural overview and exploration of their diverse magnetic, catalytic and biological properties. Coord Chem Rev 254:890

    Article  CAS  Google Scholar 

  49. Jiang H, Zhao XY, Schanze KS (2006) Amplified fluorescence quenching of a conjugated polyelectrolyte mediated by Ca2+. Langmuir 22(13):5541

    Article  CAS  PubMed  Google Scholar 

  50. Mauricio SM, Holfkens J, Gehlen MH (2008) Static and dynamic biomolecular fluorescence quenching of porphyrin dendrimers in solution. J Fluoresc 18(5):821

    Article  Google Scholar 

  51. Htun T (2003) Excited-state proton transfer in nonaqueous solvent. J Fluoresc 13:323

    Article  CAS  Google Scholar 

  52. Lackowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer Academic/Plenum Publishers, New York

    Book  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Natural Science Foundation of China for funding (21005036, 20875042, 21075058, and 21127006), Natural Science Foundation (ZR2014BQ017, 2013SJGZ07, and JQ201106) of Shandong Province and doctoral research fund of Liaocheng University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiaoli Yue or Jifeng Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, Q., Hou, Y., Yue, S. et al. Construction of an Off-On Fluorescence System Based on Carbon Dots for Trace Pyrophosphate Sensing. J Fluoresc 25, 585–594 (2015). https://doi.org/10.1007/s10895-015-1538-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1538-9

Keywords

Navigation