Log in

Static and Dynamic Bimolecular Fluorescence Quenching of Porphyrin Dendrimers in Solution

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The fluorescence quenching kinetics of two porphyrin dendrimer series (GnTPPH2 and GnPZn) by different type of quenchers is reported. The microenvironment surrounding the core in GnPZn was probing by core-quencher interactions using benzimidazole. The dependence of quencher binding constant (K a ) on generation indicates the presence of a weak interaction between branches and the core of the porphyrin dendrimer. The similar free volume in dendrimers of third and fourth generation suggests that structural collapse in high generations occurs by packing of the dendrimer peripheral layer. Dynamic fluorescence quenching of the porphyrin core by 1,3-dicyanomethylene-2-methyl-2-pentyl-indan (PDCMI) in GnTPPH2 is a distance dependent electron transfer process with an exponential attenuation factor β = 0.33 Å−1. The quenching by 1,2-dibromobenzene occurs by diffusion process of the quencher toward to the porphyrin core, and its rate constant is practically independent of dendrimer generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Matos MS, Hofkens J, Verheijen W, De Schryver FC, Hecht S, Pollak KW, Fréchet JMJ, Forier B, Dehaen W (2000) Macromolecules 33:2967

    Article  CAS  Google Scholar 

  2. De Backer S, Prinzie Y, Verheijen W, Smet M, Desmedt K, Dehaen W, De Schryver FC (1998) J Phys Chem A 102:5451

    Article  Google Scholar 

  3. Lescanec RL, Muthukumar M (1990) Macromolecules 23:2280

    Article  CAS  Google Scholar 

  4. Murat M, Grest GS (1996) Macromolecules 29:1278

    Article  CAS  Google Scholar 

  5. Boris D, Rubinstein M (1996) Macromolecules 29:7251

    Article  CAS  Google Scholar 

  6. Wilfried C (1996) J Chem Soc Faraday Trans 92:4151

    Article  Google Scholar 

  7. De Schryver FC, Vosch T, Cotlet M, van der Auweraer M, Mullen K, Hofkens J (2005) Acc Chem Res 38:524

    Article  Google Scholar 

  8. Zheng CY, Shi-Min C (1996) Macromolecules 29:7943

    Article  Google Scholar 

  9. Turro C, Niu S, Bossmann SH, Tomalia DA, Turro NJ (1995) J Phys Chem 99:5512

    Article  Google Scholar 

  10. Sadamoto R, Tomioka N, Aida T (1996) J Am Chem Soc 118:3978

    Article  CAS  Google Scholar 

  11. Pistolis G, Malliaris A, Paleos CM, Tsiourvas D (1997) Langmuir 13:5870

    Article  CAS  Google Scholar 

  12. Pollak KW, Leon JW, Fréchet JMJ, Maskus M, Abruña HD (1998) Chem Mater 10:30

    Article  CAS  Google Scholar 

  13. Schwarz PF, Turro NJ, Tomalia DA (1998) J Photochem Photobiol A: Chem 112:47

    Article  CAS  Google Scholar 

  14. ben-Avraham D, Schulman LS, Bossmann SH, Turro C, Turro NJ (1998) J Phys Chem B 102:5088

    Article  CAS  Google Scholar 

  15. Jockusch S, Ramirez J, Sanghvi K, Nociti R, turro NJ, Tomalia DA (1999) Macromolecules 32:4419

    Article  CAS  Google Scholar 

  16. Vögtle F, Plevoets M, Nieger M, Azzellini GC, Credi A, De Cola L, De Marchis V, Venturi M, Balzani V (1999) J Am Chem Soc 121:6290

    Article  Google Scholar 

  17. Ceroni P, Begamini G, Marchioni F, Balzani V (2005) Prog Polym Sci 30:453

    Article  CAS  Google Scholar 

  18. Shcharbin D, Klajnert B, Mazhul V, Bryszewska M (2005) J Fluoresc 15:21

    Article  PubMed  CAS  Google Scholar 

  19. Jokiel M, Klajnert B, Bryszewska M (2006) J Fluoresc 16:149

    Article  PubMed  CAS  Google Scholar 

  20. Ogawa MY, Moreira I, Wishart JF, Isied SS (1993) Chem Phys 176:589

    Article  CAS  Google Scholar 

  21. Risser SM, Beratan DN, Onuchic JN (1993) J Phys Chem 97:4523

    Article  CAS  Google Scholar 

  22. Szabo A, Schulten K, Schulten Z (1980) J Chem Phys 72:4350

    Article  CAS  Google Scholar 

  23. Tachiya M (1987) Kinetics of nonhomogeneous processes. In: Freeman GR (ed), Wiley, New York, p 575

Download references

Acknowledgments

The authors thank Professor J. M. J. Fréchet for the dendrimer samples, and Professor F. C. De Schryver for helpful discussion. MSM and MHG thank FAPESP and CNPq for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo H. Gehlen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matos, M.S., Hofkens, J. & Gehlen, M.H. Static and Dynamic Bimolecular Fluorescence Quenching of Porphyrin Dendrimers in Solution. J Fluoresc 18, 821–826 (2008). https://doi.org/10.1007/s10895-007-0309-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-007-0309-7

Keywords

Navigation