Log in

Regulated Ni–Zn–Co ferrites: structural, electrical and magnetic properties tailored by co do**

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this investigation, synthesized Co substituted Ni-Zn ferrites {Ni0.6Zn0.4−xCoxFe2O4 (for x = 0.00, 0.05, 0.10, 0.15, 0.20)} followed by double sintering method have been characterized by crystallographic, morphological, electrical and magnetic properties. X-ray diffraction (XRD) analysis as well as Fourier transform infrared (FT-IR) measurements of all the compositions verify the emergence of spinel cubic (single-phase) crystal structure. For Ni–Zn–Co ferrites, a cation dissemination has been suggested from the site occupancy preferences of different cations and its accuracy was confirmed by comparing the theoretically and experimentally computed lattice parameters as well as by measuring the magnetic moment. Scanning electron microscopy (SEM) showed diminished crystallite grains of average size 644 and 677 nm for 15% and 20% Co-doped compositions. An exceptional rise in dielectric constant for 10% Co-doped composite was observed at lower frequencies. AC conductivity of Co-doped ferrites showed that \({\sigma }_{AC}\) decreases with increased Co content. A single incomplete semicircle for all the investigated compositions is observed in the Nyquist plot. The impedance and modulus spectrums analysis confirmed that Co substituted samples attain non-Debye kind dielectric relaxation. The maximum relaxation time τ of 4.19 µs was found for 20% Co-doped content. The 15% Co-doped composite exhibits a significant increment in saturation magnetization (87.39 emu/g) and in magnetic moment (3.69 \({{\upmu }}_{\text{B}})\). The value of initial permeability decreases noticeably with increased Co addition. Magnetic loss (\(\text{t}\text{a}\text{n}{\delta }_{M}\)) vs. frequency plot shows the beginning of relaxation peaks for all the NZCFO composites at higher (> 107 Hz) frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets collected and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. M. Sorescu, L. Diamandescu, R. Peelamedu, R. Roy, P. Yadoji, J. Magn. Magn. Mater. 279, 195 (2004)

    CAS  Google Scholar 

  2. J.T.S. Irvine, A. Huanosta, R. Valenzuela, A.R. West, J. Am. Ceram. Soc. 73, 729 (1990)

    CAS  Google Scholar 

  3. B.P. Rao, K.H. Rao, J. Mater. Sci. 32, 6049 (1997)

    CAS  Google Scholar 

  4. S. Aman, N. Ahmad, B.S. Almutairi, M.B. Tahir, H.E. Ali, J. Electron. Mater. 52, 4149 (2023)

    CAS  Google Scholar 

  5. S. Aman, S. Gouadria, F.F. Alharbi, M.N. Saeed, H.M.T. Farid, Appl. Phys. A 129, 347 (2023)

    CAS  Google Scholar 

  6. M. Arshed, M. Siddique, M. Anwar-ul-Islam, N.M. Butt, T. Abbas, M. Ahmed, Solid State Commun. 93, 599 (1995)

    CAS  Google Scholar 

  7. S.F. Wang, Y.F. Hsu, K.M. Chou, J.T. Tsai, J. Magn. Magn. Mater. 374, 402 (2015)

    CAS  Google Scholar 

  8. A. Verma, O.P. Thakur, C. Prakash, T.C. Goel, R.G. Mendiratta, Mat. Sci. Eng. B 116, 1 (2005)

    Google Scholar 

  9. J. Gutiérrez-López, B. Levenfeld, A. Varez, J.Y. Pastor, I. Cañadas, J. Rodriguez, Ceram. Int. 41, 6534 (2015)

    Google Scholar 

  10. M.M. Haque, K.H. Maria, S. Choudhury, M.A. Bhuiyan, M.A. Hakim, J. Ceram. Process. Res. 14, 82 (2013)

    Google Scholar 

  11. K.H. Maria, S. Choudhury, M.A. Hakim, Int. Nano Lett. 3, 42 (2013)

    Google Scholar 

  12. M.A. Hakim, S.K. Nath, S.S. Sikder, K.H. Maria, J. Phys. Chem. Solids. 74, 1316 (2013)

    CAS  Google Scholar 

  13. S. Noor, M.A. Hakim, S.S. Sikder, S.M. Hoque, K.H. Maria, P. Nordblad, J. Phys. Chem. Solids. 73, 227 (2012)

    CAS  Google Scholar 

  14. S.K. Nath, K.H. Maria, S. Noor, S.S. Sikder, S.M. Hoque, M.A. Hakim, J. Magn. Magn. Mater. 324, 2116 (2012)

    CAS  Google Scholar 

  15. J. Gutiérrez-López, N. Masó, B. Levenfeld, A. Várez, A.R. West, J. Am. Ceram. Soc. 99, 2327 (2016)

    Google Scholar 

  16. Q. Yu, Y. Su, R. Tursun, J. Zhang, RSC Adv. 9, 13173 (2019)

    CAS  Google Scholar 

  17. D.G. Chen, X.G. Tang, Q.X. Liu, Y.P. Jiang, C.B. Ma, R. Li, J. Appl. Phys. 113, 214110 (2013)

    Google Scholar 

  18. N.N. Jiang, Y. Yang, Y.X. Zhang, J.P. Zhou, P. Liu, C.Y. Deng, J. Magn. Magn. Mater. 401, 370 (2016)

    CAS  Google Scholar 

  19. D.K. Pradhan, P. Misra, V.S. Puli, S. Sahoo, D.K. Pradhan, R.S. Katiyar, J. Appl. Phys. 115, 243904 (2014)

    Google Scholar 

  20. S. Mukherjee, S. Pradip, A.K. Mishra, D. Das, Appl. Phys. A 116, 389 (2014)

    CAS  Google Scholar 

  21. M.V.S. Kumar, G.J. Shankarmurthy, E. Melagiriyappa, K.K. Nagaraja, H.S. Jayanna, M.P. Telenkov, J. Mater. Sci. 29, 12795 (2018)

    Google Scholar 

  22. B.P. Rao, P.S.V.S. Rao, K.H. Rao, IEEE Trans. Magn. 33, 4454 (1997)

    CAS  Google Scholar 

  23. R. Kumar, H. Kumar, R.R. Singh, P.B. Barman, J. Sol–Gel Sci. Technol. 78, 566 (2016)

    CAS  Google Scholar 

  24. S. Gubbala, H. Nathani, K. Koizol, R.D.K. Misra, Physica B 348, 317 (2004)

    CAS  Google Scholar 

  25. B.P. Rao, O.F. Caltun, J. Adv. Mater. 8, 995 (2006)

    CAS  Google Scholar 

  26. S. Thakur, S.C. Katyal, M. Singh, J. Magn. Magn. Mater. 321, 1 (2009)

    CAS  Google Scholar 

  27. R. Kumar, H. Kumar, M. Kumar, R.R. Singh, P.B. Barman, J. Supercond. Nov. Magn. 28, 3557 (2015)

    CAS  Google Scholar 

  28. L.Z. Li, L. Peng, X.H. Zhu, D.Y. Yang, J. Electron. Sci. Technol. 10, 88 (2012)

    CAS  Google Scholar 

  29. S.L. Pereira, H.D. Pfannes, A.A.M. Filho, L.C.B. Pinto, M.A. Ch´ıncaro, Mater. Res. 2, 231 (1999)

    CAS  Google Scholar 

  30. M.A. Ali, M.M. Uddin, M.N.I. Khan, F.U.Z. Chowdhury, S.M. Haque, J. Magn. Magn. Mater. 424, 148 (2017)

    CAS  Google Scholar 

  31. A.V. Knyazev, I. Zakharchuk, E. Lähderanta, K.V. Baidakov, S.S. Knyazeva, I.V. Ladenkov, J. Magn. Magn. Mater. 435, 9 (2017)

    CAS  Google Scholar 

  32. Y. Ichiyanagi, T. Uehashi, S. Yamada, Phys. Status Solidi 12, 3485 (2004)

    Google Scholar 

  33. Z. Zheng, Q. Feng, Q. **ang, Z. Di, V.G. Harris, J. Appl. Phys. 121, 063901 (2017)

    Google Scholar 

  34. K.H. Maria, U.S. Akther, I.N. Esha, M.S. Hossain, M.N.I. Khan, J. Supercond. Nov. Magn. 33, 2133 (2020)

    CAS  Google Scholar 

  35. J.B. Nelson, D.P. Riley, Proc. Phys. Soc. 57, 160 (1994)

    Google Scholar 

  36. T.R. Tatarchuk, M. Bououdina, N.D. Paliychuk, I.P. Yaremiy, V.V. Moklyak, J. Alloys Compd. 694, 777 (2017)

    CAS  Google Scholar 

  37. A. Ahlawat, V.G. Sathe, V.R. Reddy, A. Gupta, J. Magn. Magn. Mater. 323, 2049 (2011)

    CAS  Google Scholar 

  38. H. Jalili, B. Aslibeiki, A.G. Varzaneh, V.A. Chernenko, Beilstein J. Nanotechnol. 10, 1348 (2019)

    CAS  Google Scholar 

  39. B. Aslibeiki, P. Kameli, H. Salamati, G. Concas, M.S. Fernandez, A. Talone, G. Muscas, D. Peddis, Beilstein J. Nanotechnol. 10, 856 (2019)

    CAS  Google Scholar 

  40. J.C. Debnath, R. Zeng, D.P. Chen, S.X. Dou, Mater. Sci. Eng. B 177, 48 (2012)

    CAS  Google Scholar 

  41. D. Li, Y.D. Huang, N. Sharma, Z.X. Chen, D.Z. Jia, Z.P. Guo, Phys. Chem. Chem. Phys. 14, 3634 (2012)

    CAS  Google Scholar 

  42. P. Yanga, Z. Liua, H. Qia, Z. Penga, X. Fu, Ceram. Int. 45, 13685 (2019)

    Google Scholar 

  43. F.T.Z. Toma, I.N. Esha, M.A. Amin, M.N.I. Khan, K.H. Maria, J. Ceram. Process. Res. 18, 701 (2017)

    Google Scholar 

  44. B.C. Das, F. Alam, A.K.M.H. Akther, J. Phys. Chem. Solids. 142, 109433 (2020)

    CAS  Google Scholar 

  45. K.R. Babu, K.R. Rao, B.R. Babu, J. Magn. Magn. Mater. 434, 118 (2017)

    Google Scholar 

  46. R. Waldron, Phys. Rev. 99, 1727 (1955)

    CAS  Google Scholar 

  47. T. Gutul, E. Rusu, N. Condur, V. Ursaki, E. Goncearenco, P. Vlazan, Beilstein J. Nanotechnol. 5, 402 (2014)

    Google Scholar 

  48. G.S. Shahane, A. Kumar, M. Arora, R.P. Pant, K. Lal, J. Magn. Magn. Mater. 322, 1015 (2010)

    CAS  Google Scholar 

  49. V.A. Potakova, N.D. Zverve, V.P. Romanov, Phys. Status Solidi. 12, 673 (2010)

    Google Scholar 

  50. I.W. Chen, X.H. Wang, Nature. 404, 168 (2000)

    CAS  Google Scholar 

  51. H. Su, X. Tang, H. Zhang, Z. Zhong, J. Shen, J. Appl. Phys. 109, 07A501 (2011)

    Google Scholar 

  52. M. Mahmoudi, M. Kavanlouei, J. Magn. Magn. Mater. 384, 276 (2015)

    CAS  Google Scholar 

  53. S.B. Patil, R.P. Patil, J.S. Ghodake, B.K. Chougule, J. Magn. Magn. Mater. 350, 179 (2014)

    CAS  Google Scholar 

  54. D. Md, T. Rahaman, R. Nusrat, A.K.M.A. Maleque, Hossain, J. Magn. Magn. Mater. 451, 391 (2018)

    Google Scholar 

  55. J.S. Ghodake, R.C. Kambale, S.D. Kulkarni, S.R. Sawant, S.S. Suryavanshi, Smart Mater. Struct. 18, 125009 (2009)

    Google Scholar 

  56. P.V. Reddy, T.S. Rao, J. Less Common Met. 86, 255 (1982)

    CAS  Google Scholar 

  57. A. Anwar, A. Akter, M.N.I. Khan, AIP Adv. 10, 045307 (2020)

    CAS  Google Scholar 

  58. M.A. Omar, Elementary of Solid State Physics, 2nd edn. (Wesley, Singapore, 2001)

    Google Scholar 

  59. J.P. Srivastava, Elements of solid state physics (Prentice Hall India Pvt, New Delhi, 2004)

    Google Scholar 

  60. S. Joshi, M. Kumar, S. Chhoker, A. Kumar, M. Singh, J. Magn. Magn. Mater. 426, 252 (2017)

    CAS  Google Scholar 

  61. M.D. Hossain, M.N.I. Khan, A. Nahar, M.A. Ali, M.A. Matin, S.M. Hoque, M.A. Hakim, A.T.M.K. Jamil, J. Magn. Magn. Mater. 497, 165978 (2020)

    CAS  Google Scholar 

  62. M.A. Iqbal, M.U. Islam, I. Ali, M.A. khan, I. Sadiq, I. Ali, J. Alloys Compd. 586, 404 (2014)

    Google Scholar 

  63. H.S.M. Rahimi, P. Kamelii, M. Ranjbar, H. Hajihashemi, J. Mater. Sci. 48, 2969 (2013)

    CAS  Google Scholar 

  64. A. Pradeep, P. Priyadharsini, G. Chandrasekaran, J. Alloys Compd. 509, 3917 (2011)

    CAS  Google Scholar 

  65. T.S. Laverghetta, Modern Microwave Measurements and Techniques (Artech House, London, 1988)

    Google Scholar 

  66. A. Rana, O.P. Thakur, V. Kumar, Mater. Lett. 65, 3191 (2011)

    CAS  Google Scholar 

  67. D.L. Sekulic, Z.Z. Lazarevic, M.V. Sataric, C.D. Jovalekic, N.Z. Romcevic, J. Mater. Sci. 26, 1291 (2015)

    CAS  Google Scholar 

  68. M. Hashim, S. Alimuddin, B. Kumar, H. Koo, S.E. Shirsath, E.M. Mohammed, J. Shah, R.K. Kotnala, H.K. Choi, H. Chung, R. Kumar, J. Alloy Compd. 11, 518 (2012)

    Google Scholar 

  69. G.E. Pike, Phys. Rev. B 6, 1572 (1972)

    CAS  Google Scholar 

  70. M.A. El Hiti, J. Phys. D Appl. Phys. 29, 501 (1996)

    Google Scholar 

  71. C.G. Koop, Phys. Rev. 83, 121 (1951)

    Google Scholar 

  72. J.C. Maxwell, Electricity and Magnetism, vol. 1 (Oxford University Press, Oxford, 1929)

    Google Scholar 

  73. K.W. Wagner, Arch. Elektrotechnol. 2, 371 (1914)

    Google Scholar 

  74. S.A. Mazen, A.S. Nawara, N.I. Abu-Elsaad, Ceram. Int. 47, 9856 (2021)

    CAS  Google Scholar 

  75. M. Younas, M. Nadeem, M. Atif, R. Grossinger, J. Appl. Phys. 109, 093704 (2011)

    Google Scholar 

  76. B. Baruwati, K.M. Reddy, S.V. Manorama, R.K. Singh, O. Parkash, Appl. Phys. Lett. 85, 2833 (2004)

    CAS  Google Scholar 

  77. S. Aman, N. Ahmad, S. Manzoor, M.M. Alanazi, S.A.M. Abdelmohsen, R.Y. Khosa, A.G. Al-Sehemi, R. Hua, H.A. Alzahrani, A.H. Chughtai, Catal. Surv. Asia. 27, 165 (2023)

    CAS  Google Scholar 

  78. A. Kumar, B.P. Singh, R.N.P. Choudhary, A.K. Thakur, Mater. Chem. Phys. 99, 150 (2006)

    CAS  Google Scholar 

  79. B. Behera, P. Nayak, R.N.P. Choudhary, J. Alloys Compd. 436, 226 (2007)

    CAS  Google Scholar 

  80. M.A.L. Nobre, S. Lanfredi, Mater. Lett. 47, 362 (2001)

    CAS  Google Scholar 

  81. E.V. Ramana, S.V. Suryanarayana, T.B. Sankaram, Mater. Res. Bull. 41, 1077 (2006)

    CAS  Google Scholar 

  82. R.K. Kotnala, M.A. Dar, V. Verma, A.P. Singh, W.A. Siddiqui, J. Magn. Magn. Mater. 322, 3714 (2010)

    CAS  Google Scholar 

  83. N.G. McCrum, B.E. Read, G. Williams, Anelastic and Dielectric Effects in Polymeric Solids (Wiley, New York, 1967), p. 617

    Google Scholar 

  84. C. León, M.L. Lucía, J. Santamaría, Phys. Rev. B 55, 882 (1997)

    Google Scholar 

  85. R. Richert, H. Wagner, Solid State Ion. 105, 167 (1998)

    CAS  Google Scholar 

  86. G.E. El-Falakya, O.W. Guirguisa, N.S.A. El-Aal, Prog. Nat. Sci. 22, 86 (2012)

    Google Scholar 

  87. K.P. Padmasree, D.K. Kanchan, A.R. Kulkami, Solid State Ion. 177, 475 (2006)

    CAS  Google Scholar 

  88. B.V.R. Chowdari, R. Gopalakrishnan, Solid State Ion. 23, 225 (1987)

    CAS  Google Scholar 

  89. S.K. Barik, P.K. Mahapatra, R.N.P. Choudhary, Appl. Phys. A 85, 199 (2006)

    CAS  Google Scholar 

  90. J.R. Macdonald, Impedance Spectroscopy: Emphasizing Solid State Material and Systems (Wiley, New York, 1987), pp. 317–339

    Google Scholar 

  91. P.N. Hai, S. Ohya, M. Tanaka, Nat. Nanotechnol. 5, 593 (2010)

    CAS  Google Scholar 

  92. H.K. Patel, S.W. Martin, Phys. Rev. B 45, 10292 (1991)

    Google Scholar 

  93. M.B. Hossen, A.K.M.A. Hossain, Adv. Mater. Lett. 6, 810 (2015)

    CAS  Google Scholar 

  94. M. Veverka, Z. Jira´k, O. Kaman, K. Knı´zˇek, M. Marysˇko, E. Pollert, K. Za´veˇta, A. Lancˇok, M. Dlouha´, S. Vratislav, Nanotechnology. 22, 345701 (2011)

    CAS  Google Scholar 

  95. E.J. Choi, Y.K. Ahn, K.C. Song, D.H. An, B.G. Lee, K.U. Kang, J. Korean Phys. Soc. 44, 1518 (2004)

    CAS  Google Scholar 

  96. G. Bertotti, Types of Hysteresis: Hysteresis in Magnetism, Electromagnetism (Academic Press, San Diego, 1998)

    Google Scholar 

  97. J.Z. Msomi, B. Ndlovu, T. Moyo, N.S.E. Osman, J. Alloy Comp. 683, 149 (2016)

    CAS  Google Scholar 

  98. F.L. Zabotto, A.J. Gualdi, J.A. Eiras, A.J.A. de Oliveira, D. Garcia, Mater. Res. 15, 428 (2012)

    CAS  Google Scholar 

  99. S. Kumar, T. Shinde, P. Vasambekar, Int. J. Appl. Ceram. Technol. 12, 851 (2015)

    CAS  Google Scholar 

  100. D. Varshney, K. Verma, Mater. Chem. Phys. 140, 412 (2013)

    CAS  Google Scholar 

  101. A. Globus, P. Duplex, IEEE Trans. Magn. 2, 441 (1996)

    Google Scholar 

  102. T. Tsutaoka, M. Ueshima, T. Tokunaga, J. Appl. Phys. 78, 3983 (1995)

    CAS  Google Scholar 

  103. A.P. Grelfer, V. Nakada, H. Lessoff, J. Appl. Phys. 32, S382 (1961)

    Google Scholar 

  104. A. Beitollani, M. Hoor, J. Mater. Sci. 14, 477 (2003)

    Google Scholar 

  105. A. Saini, A. Thakur, P. Thakur, J. Mater. Sci. 27, 2816 (2016)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors express their heart-felt gratitude to the Materials Science Division, Atomic Energy Centre, Dhaka, for extending the use of experimental facilities. We also acknowledge the Centre for Advanced Research in Sciences (CARS), University of Dhaka and Nano and Advanced Materials Laboratory, Department of Physics, University of Dhaka, for their co-operation while carrying out this research. The authors would also like to thank the Bose Centre for Advanced Study and Research in Natural Science, University of Dhaka, for supporting this work.

Funding

One of the authors (U. S. Akther) got partial financial support (fellowship) form Bose Centre for Advanced Study and Research in Natural Science, University of Dhaka.

Author information

Authors and Affiliations

Authors

Contributions

Authors MNIK, USA and AA contributed to the study of conception and design. Material preparation and data collection and analysis were performed by USA, AA, KHM, MKA and AK. The first draft of the manuscript was written by AA and KHMaria. All authors commented on the previous version of the manuscript and after reading it they have approved the final manuscript.

Corresponding author

Correspondence to Armin Anwar.

Ethics declarations

Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

Ethical approval

There was no potential conflict of interest between the authors and this research topic. This research doesn’t involve any human participants and/or animals. Informed consent is not applicable as no human or animal subjects were involved in this research.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anwar, A., Akther, U.S., Maria, K.H. et al. Regulated Ni–Zn–Co ferrites: structural, electrical and magnetic properties tailored by co do**. J Mater Sci: Mater Electron 35, 19 (2024). https://doi.org/10.1007/s10854-023-11748-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11748-1

Navigation