Log in

Emission and elastic strain study in GaAs/In0.15Ga0.85As/InxGa1−xAs/GaAs quantum wells with embedded InAs quantum dots

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

GaAs/In0.15Ga0.85As/InxGa1−xAs/GaAs quantum wells (QWs) with embedded InAs quantum dots (QDs) and with variable In compositions in cap** InxGa1−xAs layers (0.10 ≤ x ≤ 0.25) have been studied by means of photoluminescence, X ray diffraction (XRD) and high resolution XRD (HR-XRD) methods. InxGa1−xAs composition varying is accompanied by changing no monotonically the PL spectrum parameters of InAs QDs and by decreasing the InAs QD sizes. XRD and HR-XRD studies permit to control the InGaAs layer compositions and elastic strains in QWs. The analysis of HR-XRD results has shown that the level of elastic strain varies no monotonically in studied QD structures as well. The physical reasons of mentioned optical and structural effects and their dependences on cap** layer compositions have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Takahasi, T. Kaizu, J. Cryst. Growth 311, 1761 (2009)

    Article  Google Scholar 

  2. D. Bimberg, M. Grundman, N. N. Ledentsov, Quantum dot heterostructures, Wiley, Hoboken (2001) 328.

  3. S. Amtout, P. Raghavan, G. Rotella, G. von Winckel, A. Stinz, S. Krishna, J. Appl. Phys. 96, 3782 (2004)

    Article  Google Scholar 

  4. T. Torchinskaya, Opto-electron. Rev. 6, 121 (1998)

    Google Scholar 

  5. D. Haft, R.J. Warburton, K. Karrai, S. Huant, G. Medeiros-Ribeiro, J. Garsia, W. Schoenfeld, P.M. Petroff, Appl. Phys. Lett. 78, 2946 (2001)

    Article  Google Scholar 

  6. T.V. Torchynska, A. Stintz, J. Appl. Phys. 108(2), 024316 (2010)

    Article  Google Scholar 

  7. J.S. Kim, C.-R. Lee, B.S. Choi, H.-S. Kwack, C.W. Lee, E.D. Sim, D.K. Oh, Appl. Phys. Lett. 90, 153111 (2007)

    Article  Google Scholar 

  8. Y. Qiu, D. Uhl, R. Chacon, R. Q. Yang, Appl. Phys. Lett. 83, 1704, (2003).

  9. A. Amtout, S. Raghavan, P. Rotella, G. von Winckel, A. Stintz et al., J. Appl. Phys. 96, 3782 (2004)

    Article  Google Scholar 

  10. M. Geller, A. Marent, T. Nowozin, D. Feise, K. Potschke, N. Akcay, N. Oncan, D. Bimberg, Phys. E 40, 1811–1814 (2008).

    Article  Google Scholar 

  11. Y. Arakawa, H. Sakai, Appl. Phys. Lett. 40(11), 939–941 (1982)

    Article  Google Scholar 

  12. W. Wang, Y. Hou, D. **ong, N. Li, W. Lu et al., Appl. Phys. Lett. 92, 023508 (2008)

    Article  Google Scholar 

  13. H.W. Li, B.E. Kardyna, D.J.P. Ellis, A.J. Shields, I. Farrer et al., Appl. Phys. Lett. 93, 153503 (2008)

    Article  Google Scholar 

  14. A. Stintz, G.T. Liu, A.L. Gray, R. Spillers, S.M. Delgado, K.J. Malloy, J. Vac. Sci. Technol. B 18, 1496 (2000)

    Article  Google Scholar 

  15. T.V. Torchynska, J. Appl. Phys. 104, 074315 (2008)

    Article  Google Scholar 

  16. T.V. Torchynska, J.L. Casas Espinola, L. Borkovska, S. Ostapenko, O. Polupan, A. Stintz, P.G. Eliseev, K.J. Malloy, J. Appl. Phys. 101, 024323 (2007)

    Article  Google Scholar 

  17. H. BenNaceur, I. Moussa, O. Tottereau, A. Rebey, B. El Jani, Phys. E 41, 1779–1783 (2009)

    Article  Google Scholar 

  18. T.V. Torchynska, S. Ostapenko, M. Dybiec, Phys. Rev. B 72, 195341 (2005)

    Article  Google Scholar 

  19. M. Dybiec, S. Ostapenko, T.V. Torchynska, E. Velasquez Losada, Appl. Phys. Lett. 84, 5165 (2004)

    Article  Google Scholar 

  20. G.W. Shu, J.S. Wang, J.L. Shen, R.S. Hsiao, J.F. Chen, T.Y. Lin, C.H. Wu, Y.H. Huang, T.N. Yang, Mat. Sci. Eng. B 166, 46–49 (2010)

    Article  Google Scholar 

  21. M. Dybiec, L. Borkovska, S. Ostapenko, T.V. Torchynska, J.L. Casas Espinola, A. Stinz, K.J. Malloy, Appl. Surf. Sci. 252(15), 5542–5545 (2006)

    Article  Google Scholar 

  22. H. Li, T. Mei, W.D.H. Zhang, S.F. Yoon, H. Yuan, J. Appl. Phys. 98, 054905 (2005)

    Article  Google Scholar 

  23. P. Mukhopadhyay, P. Das, S. Pathak, D. E. Y. Chang, Biswas. Intern. Confer. on Compound Semiconductor Manufacturing Technology, May 16th-19th, 2011 CSMANTECH, Indian Wells, California, U.S.A

  24. I. De Caro, C. Giannini, Phys. Rev. B 56, 9744 (1997)

    Article  Google Scholar 

  25. G. Polupan, L.G. Vega-Macotela, F. Sanchez Silva, J. Luminescence 132, 1270–1273 (2012)

    Article  Google Scholar 

  26. T. Srinivazan, S.N. Singh, Umesh Tivari etc. J. Crystal Growth 280, 378 (2005)

  27. Q.D. Zhuang, J.M. Li, Y.P. Zeng, S.F. Yoon, H.Q. Zheng etc, J. Cryst. Growth 212, 352 (2000)

    Article  Google Scholar 

  28. H. Zhang, Y. Chen, G. Zhou, C. Tang, Z. Wang, Nanoscale Res. Lett. 7, 600 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by CONACYT Mexico (project 258224) and by SIP-IPN, Mexico (projects 20160285 and 20160360). The authors to thank the Dr. A. Stintz from Center of High Technology Materials at University of New Mexico, Albuquerque, USA for growing studied QD structures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. Vega-Macotela.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vega-Macotela, L.G., Torchynska, T.V. & Polupan, G. Emission and elastic strain study in GaAs/In0.15Ga0.85As/InxGa1−xAs/GaAs quantum wells with embedded InAs quantum dots. J Mater Sci: Mater Electron 28, 7126–7131 (2017). https://doi.org/10.1007/s10854-017-6536-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6536-z

Keywords

Navigation