Log in

Soybean hull pectin and nanocellulose: tack properties in aqueous pMDI dispersions

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A major obstacle for polymeric diphenylmethane diisocyanate (pMDI) share market growth in wood-particle and wood-fiber composites is its low adhesive tack property. In this work, we explore the improvement of pMDI tack by partial substitution using natural polymeric fractions derived from soybean hulls available at a relatively low cost. To that end, pectin was isolated from the soybean hull, and the remaining fibrous residue was fibrillated using mechanical treatment to produce both lignin-containing and chemically bleached cellulose nanofibrils (LCNFs and BCNFs, respectively). Pectin-isolated fractions from the soybean hull were chemically characterized. Pectin and nanofibrillated cellulose were used as additives in pMDI dispersions to improve its tack property. To determine the tack properties of the soybean hull-based-pMDI dispersions, rheological analysis was optimized based on an adaptation of the probe-tack test. Results clearly showed increased tack properties in pMDI/pectin/CNFs dispersions with the combination between soybean hull pectin and LCNFs exceeding the sum of their isolated effects compared to pMDI resin alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Data, https://www.reportsanddata.com R and Methylene Diphenyl Diisocyanate (MDI) Market Size, 2019–2026. https://www.reportsanddata.com/report-detail/methylene-diphenyl-diisocyanate-mdi-market. Accessed 17 Aug 2020

  2. Gao D, Fan B, Zhang B et al (2019) Storage stability of polyamidoamine-epichlorohydrin resin and its effect on the properties of defatted soybean flour-based adhesives. Int J Adhes Adhes 91:92–101. https://doi.org/10.1016/j.ijadhadh.2019.03.006

    Article  CAS  Google Scholar 

  3. Asafu-Adjaye O, Via B, Banerjee S (2020) Increasing cold tack of polymeric methylene diphenyl diisocyanate resin with partial soy flour substitution. For Prod J 70:143–144. https://doi.org/10.13073/FPJ-D-19-00049

    Article  Google Scholar 

  4. Frihart CR (2015) Introduction to special issue: wood adhesives: past present and future. Forest Prod J. 65:4–8. https://doi.org/10.13073/65.1-2.4

    Article  Google Scholar 

  5. Chen H, Nair SS, Chauhan P, Yan N (2019) Lignin containing cellulose nanofibril application in pMDI wood adhesives for drastically improved gap-filling properties with robust bondline interfaces. Chem Eng J 360:393–401

    Article  CAS  Google Scholar 

  6. Frihart C (2012) Wood adhesion and adhesives. In: Handbook of wood chemistry and wood composites, 2nd Ed. CRC Press, pp 255–320

  7. Zosel A (1998) The effect of fibrilation on the tack of pressure sensitive adhesives. Int J Adhes Adhes 18:265–271. https://doi.org/10.1016/S0143-7496(98)80060-2

    Article  CAS  Google Scholar 

  8. Wilson JB (1980) Isocyanate adhesives as binders for composition board. Wood adhesives-research, application, and needs Madison: USDA Forest Service (Forest Products Laboratory). pp. 117–121

  9. Higgins ED (1995) Isocyanate reactive hot-melt adhesive for veneer laminates. For Prod J 45:72

    Google Scholar 

  10. Asafu-Adjaye O, Via B, Banerjee S (2020) Increasing cold tack of polymeric methylene diphenyl diisocyanate resin with partial soy flour substitution. For Prod J 70(1):143-144

  11. Asafu-Adjaye O (2020) Wood composites production with epoxy resin substituted liquefied lignocellulosic biomass, and polymeric Diphenylmethane Diisocyanate substituted defatted soy flour as wood adhesives

  12. Berk Z (1992) Technology of production of edible flours and protein products from soybeans.

  13. Kumar Singh A, Singh Mehra D, Kumar Niyogi U et al (2012) Effect of tackifier and crosslinkers on electron beam curable polyurethane pressure sensitive adhesive. Radiat Phys Chem 81:547–552. https://doi.org/10.1016/j.radphyschem.2012.01.017

    Article  CAS  Google Scholar 

  14. Shimizu K, Phanopoulos C, Loenders R et al (2010) The characterization of the interfacial interaction between polymeric methylene diphenyl diisocyanate and aluminum: a ToF-SIMS and XPS study. Surf Interface Anal 42:1432–1444. https://doi.org/10.1002/sia.3586

    Article  CAS  Google Scholar 

  15. Dillingham RG, Moriarty C (2003) The adhesion of isocyanate-based polymers to steel. J Adhes 79:269–285

    Article  CAS  Google Scholar 

  16. Yuan J, Shi SQ (2009) Effect of the addition of wood flours on the properties of rigid polyurethane foam. J Appl Polym Sci 113:2902–2909. https://doi.org/10.1002/app.30322

    Article  CAS  Google Scholar 

  17. Hosseinpourpia R, Adamopoulos S, Mai C et al (2019) Properties of medium-density fibreboards bonded with dextrin-based wood adhesive. Wood Res 64:10

    Google Scholar 

  18. Ivdre A, Cabulis U, Arshanitsa A (2014) Wheat straw lignin as filler for rigid polyurethane foams on the basis of tall oil amide. Polimery 59:477–481. https://doi.org/10.14314/polimery.2014.477

    Article  Google Scholar 

  19. Wysocka K, Szymona K, McDonald AG, Mamiński MŁ (2016) Characterization of thermal and mechanical properties of lignosulfonate- and Hydrolyzed lignosulfonate-based polyurethane foams. BioResources 11:7355–7364

    Article  CAS  Google Scholar 

  20. Zhang J, Hori N, Takemura A (2021) Reinforcement of agricultural wastes liquefied polyols based polyurethane foams by agricultural wastes particles. J Appl Polym Sci 138:50583. https://doi.org/10.1002/app.50583

    Article  CAS  Google Scholar 

  21. Hornus M, Via BK, Gallagher T, Peresin MS (2021) Partial substitution of pMDI with lignin containing cellulose nanofibrils: low density oriented strand board. Wood Mat Sci Eng 16:391–396. https://doi.org/10.1080/17480272.2020.1769722

    Article  CAS  Google Scholar 

  22. Sonnenschein MF, Wendt BL, Sonnenschein GF (2005) Interfacial factors affecting polymeric diphenylmethane diisocyanate/wood bond strength. J Appl Polym Sci 98:449–455. https://doi.org/10.1002/app.21946

    Article  CAS  Google Scholar 

  23. FAOSTAT. http://www.fao.org/faostat/en/#search/Soybeans. Accessed 16 Feb 2021

  24. Hult E-L, Iotti M, Lenes M (2010) Efficient approach to high barrier packaging using microfibrillar cellulose and shellac. Cellulose 17:575–586. https://doi.org/10.1007/s10570-010-9408-8

    Article  CAS  Google Scholar 

  25. Gnanasambandam R, Proctor A (1999) Preparation of soy hull pectin. Food Chem 65:461–467. https://doi.org/10.1016/S0308-8146(98)00197-6

    Article  CAS  Google Scholar 

  26. Cassales A, de Souza-Cruz PB, Rech R, Záchia Ayub MA (2011) Optimization of soybean hull acid hydrolysis and its characterization as a potential substrate for bioprocessing. Biomass Bioenerg 35:4675–4683. https://doi.org/10.1016/j.biombioe.2011.09.021

    Article  CAS  Google Scholar 

  27. Kalapathy U, Proctor A (2001) Effect of acid extraction and alcohol precipitation conditions on the yield and purity of soy hull pectin. Food Chem 73:393–396

    Article  CAS  Google Scholar 

  28. Mohnen D (2008) Pectin structure and biosynthesis. Curr Opin Plant Biol 11:266–277. https://doi.org/10.1016/j.pbi.2008.03.006

    Article  CAS  Google Scholar 

  29. Harholt J, Suttangkakul A, Scheller HV (2010) Biosynthesis of pectin. Plant Physiol 153:384–395

    Article  CAS  Google Scholar 

  30. Rojo E, Soledad Peresin M, Sampson W et al (2015) Comprehensive elucidation of the effect of residual lignin on the physical, barrier, mechanical and surface properties of nanocellulose films. Green Chem 17:1853–1866. https://doi.org/10.1039/C4GC02398F

    Article  CAS  Google Scholar 

  31. Chen H, Gnanasekar P, Nair SS et al (2020) Lignin as a key component in lignin-containing cellulose nanofibrils for enhancing the performance of polymeric diphenylmethane diisocyanate wood adhesives. ACS Sustainable Chem Eng 8:17165–17176. https://doi.org/10.1021/acssuschemeng.0c05642

    Article  CAS  Google Scholar 

  32. Iglesias MC, Shivyari N, Norris A et al (2020) The effect of residual lignin on the rheological properties of cellulose nanofibril suspensions. J Wood Chem Technol 40:370–381. https://doi.org/10.1080/02773813.2020.1828472

    Article  CAS  Google Scholar 

  33. Diop CIK, Tajvidi M, Bilodeau MA et al (2017) Evaluation of the incorporation of lignocellulose nanofibrils as sustainable adhesive replacement in medium density fiberboards. Ind Crops Prod 109:27–36

    Article  CAS  Google Scholar 

  34. Hubbe MA, Tayeb P, Joyce M et al (2017) Rheology of nanocellulose-rich aqueous suspensions: a review. BioResources 12:9556–9661

    Article  CAS  Google Scholar 

  35. Iglesias MC, Hamade F, Aksoy B et al (2021) Correlations between rheological behavior and intrinsic properties of nanofibrillated cellulose from wood and soybean hulls with varying lignin content. BioResources 16:4831–4845. https://doi.org/10.15376/biores.16.3.4831-4845

    Article  CAS  Google Scholar 

  36. Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16:220–227. https://doi.org/10.1016/j.mattod.2013.06.004

    Article  CAS  Google Scholar 

  37. Jarvis MC (1984) Structure and properties of pectin gels in plant cell walls. Plant, Cell Environ 7:153–164. https://doi.org/10.1111/1365-3040.ep11614586

    Article  CAS  Google Scholar 

  38. Fishman ML, Chau HK, Qi PX et al (2015) Characterization of the global structure of low methoxyl pectin in solution. Food Hydrocolloids 46:153–159

    Article  CAS  Google Scholar 

  39. Technology of production of edible flours and protein products from soybeans. Chapter 4. https://www.fao.org/3/t0532e/t0532e05.htm. Accessed 30 Nov 2021

  40. Dei HK (2011) Soybean as a feed ingredient for livestock and poultry. In: Recent trends for enhancing the diversity and quality of soybean products. IntechOpen

  41. Zainudin BH, Wong TW, Hamdan H (2018) Design of low molecular weight pectin and its nanoparticles through combination treatment of pectin by microwave and inorganic salts. Polym Degrad Stab 147:35–40

    Article  CAS  Google Scholar 

  42. Melton LD, Smith BG (2001) Determination of the uronic acid content of plant cell walls using a colorimetric assay. In: Current protocols in food analytical chemistry. WileyPublication

  43. Monsoor MA, Proctor A (2001) Preparation and functional properties of soy hull pectin. J Am Oil Chem Soc 78:709

    Article  CAS  Google Scholar 

  44. Monsoor MA (2005) Effect of drying methods on the functional properties of soy hull pectin. Carbohyd Polym 61:362–367

    Article  CAS  Google Scholar 

  45. Monsoor MA (1981) Food chemicals codex, 3rd edn. The National Academies Press, Washington, DC

    Google Scholar 

  46. Hosseini SS, Khodaiyan F, Yarmand MS (2016) Optimization of microwave assisted extraction of pectin from sour orange peel and its physicochemical properties. Carbohyd Polym 140:59–65

    Article  CAS  Google Scholar 

  47. de Sato MF, Rigoni DC, Canteri MHG et al (2011) Chemical and instrumental characterization of pectin from dried pomace of eleven apple cultivars. Acta Scientiarum Agronomy 33:383–389

    CAS  Google Scholar 

  48. Faravash RS, Ashtiani FZ (2008) The influence of acid volume, ethanol-to-extract ratio and acid-washing time on the yield of pectic substances extraction from peach pomace. Food Hydrocolloids 22:196–202

    Article  CAS  Google Scholar 

  49. Gnanasambandam R, Proctor A (2000) Determination of pectin degree of esterification by diffuse reflectance Fourier transform infrared spectroscopy. Food Chem 68:327–332

    Article  CAS  Google Scholar 

  50. Monsoor MA, Kalapathy U, Proctor A (2001) Improved method for determination of pectin degree of esterification by diffuse reflectance Fourier transform infrared spectroscopy. J Agric Food Chem 49:2756–2760

    Article  CAS  Google Scholar 

  51. Espino E, Cakir M, Domenek S et al (2014) Isolation and characterization of cellulose nanocrystals from industrial by-products of Agave tequilana and barley. Ind Crops Prod 62:552–559

    Article  CAS  Google Scholar 

  52. Hernández JA, Romero VH, Escalante A et al (2018) Agave tequilana bagasse as source of cellulose nanocrystals via organosolv treatment. BioResources 13:3603–3614

    Article  Google Scholar 

  53. Iglesias MC (2018) Lignin-containing cellulose nanofibrils (LCNF): processing and characterization. Master’s thesis, 2018, Auburn University. http://hdl.handle.net/10415/6303

  54. Villada Y, Iglesias MC, Casis N et al (2018) Cellulose nanofibrils as a replacement for xanthan gum (XGD) in water based muds (WBMs) to be used in shale formations. Cellulose 25:7091–7112

    Article  CAS  Google Scholar 

  55. Stana-Kleinschek K, Strnad S, Ribitsch V (1999) Surface characterization and adsorption abilities of cellulose fibers. Polym Eng Sci 39:1412–1424. https://doi.org/10.1002/pen.11532

    Article  CAS  Google Scholar 

  56. Espinosa E, Tarrés Q, Delgado-Aguilar M et al (2016) Suitability of wheat straw semichemical pulp for the fabrication of lignocellulosic nanofibres and their application to papermaking slurries. Cellulose 23:837–852. https://doi.org/10.1007/s10570-015-0807-8

    Article  CAS  Google Scholar 

  57. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794. https://doi.org/10.1177/004051755902901003

    Article  CAS  Google Scholar 

  58. Park S, Baker JO, Himmel ME et al (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10. https://doi.org/10.1186/1754-6834-3-10

    Article  CAS  Google Scholar 

  59. Team Rs (2020) RStudio: integrated development for R. RStudio, PBC, Boston

  60. Schultz BB (1985) Levene’s test for relative variation. Syst Biol 34:449–456. https://doi.org/10.1093/sysbio/34.4.449

    Article  Google Scholar 

  61. Hsu HP (1997) Schaum’s outline of theory and problems of probability, random variables, and random processes. McGraw-Hill, New York

    Google Scholar 

  62. Corredor DY, Sun XS, Salazar JM et al (2008) Enzymatic hydrolysis of soybean hulls using dilute acid and modified steam-explosion pretreatments. J Biobased Mater Bioenergy 2:43–50

    Article  Google Scholar 

  63. Mielenz JR, Bardsley JS, Wyman CE (2009) Fermentation of soybean hulls to ethanol while preserving protein value. Biores Technol 100:3532–3539

    Article  CAS  Google Scholar 

  64. Blasi D, Titgemeyer E, Drouillard J, Paisley S, Brouk, M (2000) Soybean hulls, composition and feeding value for beef and dairy cattle. Kansas State: University Agricultural Experimental Station and Cooperative Extension Service. Bull. MF-2438. https://bookstore.ksre.ksu.edu/pubs/mf2438.pdf

  65. Liu H-M, Li H-Y (2017) Application and conversion of soybean hulls. Soybean - The Basis Yield Bio Prod. https://doi.org/10.5772/66744

    Article  Google Scholar 

  66. Qing Q, Guo Q, Zhou L et al (2017) Comparison of alkaline and acid pretreatments for enzymatic hydrolysis of soybean hull and soybean straw to produce fermentable sugars. Ind Crops Prod 109:391–397. https://doi.org/10.1016/j.indcrop.2017.08.051

    Article  CAS  Google Scholar 

  67. Porfiri MC, Wagner JR (2018) Extraction and characterization of soy hull polysaccharide-protein fractions. Analysis of aggregation and surface rheology. Food Hydrocolloids 79:40–47. https://doi.org/10.1016/j.foodhyd.2017.11.050

    Article  CAS  Google Scholar 

  68. Nakamura A, Furuta H, Maeda H et al (2002) Structural studies by stepwise enzymatic degradation of the main backbone of soybean soluble polysaccharides consisting of galacturonan and rhamnogalacturonan. Biosci Biotechnol Biochem 66:1301–1313. https://doi.org/10.1271/bbb.66.1301

    Article  CAS  Google Scholar 

  69. Porfiri MC, Cabezas DM, Wagner JR (2016) Comparative study of emulsifying properties in acidic condition of soluble polysaccharides fractions obtained from soy hull and defatted soy flour. J Food Sci Technol 53:956–967

    Article  CAS  Google Scholar 

  70. Rolin C, De Vries J (1990) Pectin. In: Harris P (ed) Food gels. Unilever Research Laboratory, Bedford, UK

  71. Axelos M, Thibault J (1991) The chemistry of low-methoxyl pectin gelation. Chem Technol Pectin 6:109–108

    Article  Google Scholar 

  72. Oakenfull D, Scott A (1984) Hydrophobic interaction in the gelation of high methoxyl pectins. J Food Sci 49:1093–1098. https://doi.org/10.1111/j.1365-2621.1984.tb10401.x

    Article  CAS  Google Scholar 

  73. Durand D, Bertrand C, Clark AH, Lips A (1990) Calcium-induced gelation of low methoxy pectin solutions—Thermodynamic and rheological considerations. Int J Biol Macromol 12:14–18

    Article  CAS  Google Scholar 

  74. Kastner H, Einhorn-Stoll U, Senge B (2012) Structure formation in sugar containing pectin gels – Influence of Ca2+ on the gelation of low-methoxylated pectin at acidic pH. Food Hydrocolloids 27:42–49. https://doi.org/10.1016/j.foodhyd.2011.09.001

    Article  CAS  Google Scholar 

  75. Garnier C, Axelos M, Thibault J-F (1991) Dynamic viscoelasticity and thermal behaviour of pectin—calcium gels. Food Hydrocolloids 5:105–108

    Article  CAS  Google Scholar 

  76. Zhang L, Ye X, Ding T et al (2013) Ultrasound effects on the degradation kinetics, structure and rheological properties of apple pectin. Ultrason Sonochem 20:222–231. https://doi.org/10.1016/j.ultsonch.2012.07.021

    Article  CAS  Google Scholar 

  77. Wang S, Zhao L, Li Q et al (2019) Rheological properties and chain conformation of soy hull water-soluble polysaccharide fractions obtained by gradient alcohol precipitation. Food Hydrocolloids 91:34–39. https://doi.org/10.1016/j.foodhyd.2018.12.054

    Article  CAS  Google Scholar 

  78. Júnior JAA, Baldo JB (2014) The behavior of zeta potential of silica suspensions. New J Glass Ceramics 04:29. https://doi.org/10.4236/njgc.2014.42004

    Article  CAS  Google Scholar 

  79. Reischl M, Stana-Kleinschek K, Ribitsch V (2006) Electrokinetic investigations of oriented cellulose polymers. Macromol Symp 244:31–47. https://doi.org/10.1002/masy.200651203

    Article  CAS  Google Scholar 

  80. Hai LV, Kim HC, Kafy A et al (2017) Green all-cellulose nanocomposites made with cellulose nanofibers reinforced in dissolved cellulose matrix without heat treatment. Cellulose 24:3301–3311. https://doi.org/10.1007/s10570-017-1333-7

    Article  CAS  Google Scholar 

  81. Galiwango E, Abdel Rahman NS, Al-Marzouqi AH et al (2019) Isolation and characterization of cellulose and α-cellulose from date palm biomass waste. Heliyon. https://doi.org/10.1016/j.heliyon.2019.e02937

    Article  Google Scholar 

  82. Palacios Hinestroza H, Hernández Diaz JA, Esquivel Alfaro M et al (2019) Isolation and characterization of nanofibrillar cellulose from agave tequilana weber bagasse. Adv Mater Sci Eng 2019:1342547. https://doi.org/10.1155/2019/1342547

    Article  CAS  Google Scholar 

  83. Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues–wheat straw and soy hulls. Biores Technol 99:1664–1671

    Article  CAS  Google Scholar 

  84. Huang Y, Wang Z, Wang L et al (2016) Analysis of lignin aromatic structure in wood fractions based on IR spectroscopy. J Wood Chem Technol 36:377–382

    Article  CAS  Google Scholar 

  85. Yang H, Yan R, Chen H et al (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788

    Article  CAS  Google Scholar 

  86. Morán JI, Alvarez VA, Cyras VP, Vázquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15:149–159. https://doi.org/10.1007/s10570-007-9145-9

    Article  CAS  Google Scholar 

  87. ASTM International. Standard test methods for loop tack. (ASTM D6195-03). https://www.astm.org/d6195-03r19.html

  88. ASTM International. Standard test method for pressure-sensitive tack of adhesives using an inverted probe machine. (ASTM-D2979-01). https://www.astm.org/d2979-16.html

  89. ASTM International. Standard test method for tack of pressure-sensitive adhesives by rolling ball. (ASTM D3121-17). https://www.astm.org/d3121-17.html

  90. Tirumkudulu M, Russel WB, Huang TJ (2003) On the measurement of “tack” for adhesives. Phys Fluids 15:1588–1605. https://doi.org/10.1063/1.1571058

    Article  CAS  Google Scholar 

  91. Tirumkudulu M, Russel WB, Huang TJ (2003) Measuring the “tack” of waterborne adhesives. J Rheol 47:1399–1415. https://doi.org/10.1122/1.1608953

    Article  CAS  Google Scholar 

  92. Wang X (2016) Filler effects in resole adhesive formulations. Thesis, Virginia Tech

  93. Adams MA, Conway TL (2014) Eta squared. In: Michalos AC (ed) Encyclopedia of quality of life and well-being research. Springer, Netherlands, Dordrecht, pp 1965–1966

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was done under the Project Grant 1940-352-0701-D from the United Soybean Board (USB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria S. Peresin.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Handling Editor: Stephen Eichhorn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4290 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernandez, J.A., Soni, B., Iglesias, M.C. et al. Soybean hull pectin and nanocellulose: tack properties in aqueous pMDI dispersions. J Mater Sci 57, 5022–5035 (2022). https://doi.org/10.1007/s10853-022-06938-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-06938-x

Navigation