Log in

Conduction properties of acceptor-doped BaTiO3–Bi(Zn1/2Ti1/2)O3-based ceramics

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A series of acceptor-doped ceramics based on the solid solution, (1-x)BaTiO3xBi(Zn1/2Ti1/2)O3 (BT-BZT), where x = 0.1, 0.2, 0.3, 0.4, were prepared via solid-state synthesis to investigate the effect of do** and BZT content on conduction properties. Impedance spectroscopy measurements showed an increase in conductivity through acceptor do** with Mg on the Ti-site (\({\text{Mg}}_{{{\text{Ti}}}}^{^{\prime\prime}}\)). Ceramics of the composition, 0.80BaTiO3–0.20Bi(Zn1/2Ti1/2)O3 with 3 mol% \({\text{Mg}}_{{{\text{Ti}}}}^{^{\prime\prime}}\), showed the highest conductivity in this study at 1.28 mScm−1 (~ 600 °C), an order of magnitude improvement over the stoichiometric composition. Variable pO2 impedance measurements revealed p-type conductivity in the grain while EMF measurements showed that above ~ 550 °C, ions are the dominant charge carriers (transference number, ti = 0.91 at 735 °C). Similarly, all 3 mol% Mg-doped compositions above x = 0.1 were primarily ionic conductors with transference numbers above ti = 0.79 (735 °C). X-ray diffraction data showed a pseudocubic primary phase for all samples with evidence of additional impurity phases accompanying samples with 3 mol% \({\text{Mg}}_{{{\text{Ti}}}}^{^{\prime\prime}}\) or greater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Beuerlein MA, Kumar N, Usher TM et al (2016) Current understanding of structure–processing–property relationships in BaTiO3–Bi(M)O3 dielectrics. J Am Ceram Soc 99:2849–2870. https://doi.org/10.1111/jace.14472

    Article  CAS  Google Scholar 

  2. Kumar N, Cann DP (2016) Tailoring transport properties through nonstoichiometry in BaTiO3–BiScO3 and SrTiO3–Bi(Zn1/2Ti1/2)O3 for capacitor applications. J Mater Sci 51:9404–9414. https://doi.org/10.1007/s10853-016-0186-z

    Article  CAS  Google Scholar 

  3. Li L, Li M, Zhang H et al (2016) Controlling mixed conductivity in Na1/2Bi1/2TiO3 using A-site non-stoichiometry and Nb-donor do**. J Mater Chem C 4:5779–5786. https://doi.org/10.1039/c6tc01719c

    Article  CAS  Google Scholar 

  4. Li M, Pietrowski MJ, De Souza RA et al (2014) A family of oxide ion conductors based on the ferroelectric perovskite Na0.5Bi0.5TiO3. Nat Mater 13:31–35. https://doi.org/10.1038/nmat3782

    Article  CAS  Google Scholar 

  5. Prasertpalichat S, Schmidt W, Cann DP (2016) Effects of A-site nonstoichiometry on oxide ion conduction in 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 ceramics. J Adv Dielectr 06:1650012. https://doi.org/10.1142/S2010135X16500120

    Article  CAS  Google Scholar 

  6. Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric ceramics. Acad Press, Cambridge, p 328

    Google Scholar 

  7. Kishi H, Mizuno Y, Chazono H (2003) Base-metal electrode-multilayer ceramic capacitors: past, present and future perspectives. Jpn J Appl Phys 42:1–5. https://doi.org/10.1143/JJAP.42.1

    Article  CAS  Google Scholar 

  8. Rödel J, Webber KG, Dittmer R et al (2015) Transferring lead-free piezoelectric ceramics into application. J Eur Ceram Soc 35:1659–1681. https://doi.org/10.1016/j.jeurceramsoc.2014.12.013

    Article  CAS  Google Scholar 

  9. Raengthon N, Sebastian T, Cumming D et al (2012) BaTiO3-Bi(Zn1/2Ti1/2)O3- BiScO3 ceramics for high-temperature capacitor applications. J Am Ceram Soc 95:3554–3561. https://doi.org/10.1111/j.1551-2916.2012.05340.x

    Article  CAS  Google Scholar 

  10. Kumar N, Patterson EA, Frömling T et al (2016) Conduction mechanisms in BaTiO3–Bi(Zn1/2Ti1/2)O3 ceramics. J Am Ceram Soc 99:3047–3054. https://doi.org/10.1111/jace.14313

    Article  CAS  Google Scholar 

  11. Kumar N, Cann DP (2015) Resistivity enhancement and transport mechanisms in (1–x)BaTiO3–xBi(Zn1/2Ti1/2)O3 and (1–x)SrTiO3–xBi(Zn1/2Ti1/2)O3. J Am Ceram Soc 98:2548–2555. https://doi.org/10.1111/jace.13666

    Article  CAS  Google Scholar 

  12. Kumar N, Patterson EA, Frömling T, Cann DP (2016) DC-bias dependent impedance spectroscopy of BaTiO3-Bi(Zn1/2Ti1/2)O3 ceramics. J Mater Chem C 4:1782–1786. https://doi.org/10.1039/c5tc04247j

    Article  CAS  Google Scholar 

  13. Kumar N, Golledge SL, Cann DP (2016) Synthesis and electrical properties of BaBiO3 and high resistivity BaTiO3–BaBiO3 ceramics. J Adv Dielectr 06:1650032. https://doi.org/10.1142/S2010135X16500326

    Article  CAS  Google Scholar 

  14. Kumar N, Patterson EA, Fromling T et al (2017) Defect mechanisms in BaTiO3-BiMO3 ceramics. J Am Ceram Soc 101:2376–2390. https://doi.org/10.1111/jace.15403

    Article  CAS  Google Scholar 

  15. Smyth D (2000) The defect chemistry of metal oxides. Oxford University Press, Oxford

    Google Scholar 

  16. Triamnak N, Yimnirun R, Pokorny J, Cann DP (2013) Relaxor characteristics of the phase transformation in (1–x)BaTiO3-xBi(Zn1/2Ti1/2)O3 perovskite ceramics. J Am Ceram Soc 96:3176–3182. https://doi.org/10.1111/jace.12495

    Article  CAS  Google Scholar 

  17. Triamnak N, Brennecka GL, Brown-Shaklee HJ et al (2014) Phase formation of BaTiO3–Bi(Zn1/2Ti1/2)O3 perovskite ceramics. J Ceram Soc Japan 122:260–266. https://doi.org/10.2109/jcersj2.122.260

    Article  CAS  Google Scholar 

  18. Patterson EA, Cann DP (2012) Relaxor to ferroelectric transitions in (Bi1/2Na1/2)TiO3–Bi(Zn1/2Ti1/2)O3 solid solutions. J Am Ceram Soc 95:3509–3514. https://doi.org/10.1111/j.1551-2916.2012.05320.x

    Article  CAS  Google Scholar 

  19. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A32:751–767

    Article  CAS  Google Scholar 

  20. Yang F, Li M, Li L et al (2017) Optimisation of oxide-ion conductivity in acceptor-doped Na0.5Bi0.5TiO3 perovskite: approaching the limit? J Mater Chem A 5:21658–21662. https://doi.org/10.1039/c7ta07667c

    Article  CAS  Google Scholar 

  21. Raengthon N, Derose VJ, Brennecka GL, Cann DP (2012) Defect mechanisms in high resistivity BaTiO3-Bi(Zn1/2Ti1/2)O3 ceramics. Appl Phys Lett. https://doi.org/10.1063/1.4752452

    Article  Google Scholar 

  22. Irvine JTS, Sinclair DC, West AR (2016) Electroceramics: characterization by impedance spectroscopy. Adv Mater 21:132–138. https://doi.org/10.1002/chin.199026349

    Article  Google Scholar 

  23. Sinclair DC (1995) Characterization of electro-materials using ac impedance spectroscopy. Bol la Soc Esp Cerám y Vidr 34:55–65

    CAS  Google Scholar 

  24. Yoo HI, Song CR (2000) Defect structure and chemical diffusion in BaTiO3-δ. Solid State Ionics 135:619–623. https://doi.org/10.1016/S0167-2738(00)00420-3

    Article  CAS  Google Scholar 

  25. Jun YW, Lee J-H, Choi J, Cheon J (2017) BaTiO3−δ: defect structure, electrical conductivity, chemical diffusivity, thermoelectric power, and oxygen nonstoichiometry. J Phys Chem B 52:668–677

    Google Scholar 

  26. Li M, Zhang H, Cook SN et al (2015) Dramatic influence of A-site nonstoichiometry on the electrical conductivity and conduction mechanisms in the perovskite oxide Na0.5Bi0.5TiO3. Chem Mater 27:629–634. https://doi.org/10.1021/cm504475k

    Article  CAS  Google Scholar 

  27. Long C, Du T, Ren W (2020) Significant ion conduction in Cu acceptor-substituted bismuth titanate polycrystalline ceramics. J Mater Sci 55:5715–5729. https://doi.org/10.1007/s10853-020-04431-x

    Article  CAS  Google Scholar 

  28. Meyer KC, Albe K (2017) Influence of phase transitions and defect associates on the oxygen migration in the ion conductor Na1/2Bi1/2TiO3. J Mater Chem A 5:4368–4375. https://doi.org/10.1039/c6ta10566a

    Article  CAS  Google Scholar 

  29. Van Laethem D, Deconinck J, Hubin A (2019) Ionic conductivity of space charge layers in acceptor doped ceria. J Eur Ceram Soc 39:432–441. https://doi.org/10.1016/j.jeurceramsoc.2018.08.046

    Article  CAS  Google Scholar 

  30. De Souza RA (2015) Oxygen diffusion in SrTiO3 and related perovskite oxides. Adv Funct Mater 25:6326–6342. https://doi.org/10.1002/adfm.201500827

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. DMR-1832803.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ryan R. McQuade or David P. Cann.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Kevin Jones.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McQuade, R.R., Mardilovich, P., Kumar, N. et al. Conduction properties of acceptor-doped BaTiO3–Bi(Zn1/2Ti1/2)O3-based ceramics. J Mater Sci 55, 16290–16299 (2020). https://doi.org/10.1007/s10853-020-05175-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05175-4

Navigation