Log in

On the solid/liquid interfacial energies of metals and alloys

  • Metals
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The solid/liquid interfacial energies of pure metals and metallic alloys are modelled in this paper. A simple model is offered for pure metals, showing that their solid/liquid interfacial energy (sigma) slightly increases with temperature. Sigma for metallic alloys is considered for the interface between solid and liquid solutions being in thermodynamic equilibrium, calculated by the CALPHAD method. The Butler equation is extended to find the equilibrium composition of the solid/liquid interfacial region and the solid/liquid interfacial energy at fixed temperatures. This method takes into account the segregation of low-interfacial energy components to the solid/liquid interfacial region. It is shown how the new method can be extended to multi-component alloys. The method is applied to calculate the solid/liquid interfacial energy of Al-rich solid solutions in equilibrium with eutectic liquid alloys of Al–Cu, Al–Ni, Al–Ag and Al–Ag–Cu systems. Good agreement was found with experimental values. For the Al–Ag–Cu system, the modelled value allows to select the more probable experimental value from the two contradicting experimental values published in the literature. The solid/liquid interfacial energy is calculated for the eutectic Ag–Cu system as function of liquidus composition (which determines both the equilibrium solidus composition and the equilibrium temperature). Finally it is claimed that using solely bulk thermodynamic data (melting enthalpy and molar volumes of pure components and molar excess Gibbs energies of equilibrium solid and liquid solutions) it is possible to provide meaningful values for the temperature and concentration dependence of solid/liquid interfacial energies of alloys. The method can be applied for simulation of solid/liquid phase transformation and also to solid/liquid equilibrium calculations of nano-alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Jones DRH (1974) Review. The free energies of solid–liquid interfaces. J Mater Sci 9:1–17. https://doi.org/10.1007/BF00554751

    Article  Google Scholar 

  2. Eustathopoulos N (1983) Energetics of solid/liquid interfaces of metals and alloys. Int Met Rev 28:189–210

    Article  Google Scholar 

  3. Jones H (2007) An evaluation of measurements of solid/liquid interfacial energies in metallic alloy systems by the groove profile method. Metall Mater Trans A 38A:1563–1569

    Article  Google Scholar 

  4. Zhang L, Stratmann M, Du Y, Sundman D, Steinbach I (2015) Incorporating the CALPHAD sublattice approach of ordering into the phase-field model with finite interface dissipation. Acta Mater 88:156–169

    Article  Google Scholar 

  5. Wang K, Wei M, Zhang L, Du Y (2016) Morphologies of primary silicon in hypereutectic Al–Si alloys: phase-field simulation supported by key experiments. Metall Mater Trans A 47A:1510–1516

    Article  Google Scholar 

  6. Yang J, Hu W (2016) Nucleation and solid–liquid interfacial energy of Li nanoparticles: a molecular dynamics study. Phys Stat Solidi B 253:1941–1946

    Article  Google Scholar 

  7. Lin C, Smith JS, Sinogeikin SV, Kono Y, Park C, Kenney-Benson C, Shen G (2017) A metastable liquid melted from a crystalline solid under decompression. Nat Commun 8:14260

    Article  Google Scholar 

  8. Yoshimura R, Nagaoka S, Nagatomo Y, Esaka H, Shinozuka K (2017) Undercooling for nucleation and volume fraction of primary β-Sn phase in Sn-X alloys. J Jpn Inst Met Mater 81:80–88

    Article  Google Scholar 

  9. Shibuta Y, Sakane S, Miyoshi E, Okita S, Tataki T, Ohno M (2017) Heterogeneity in homogeneous nucleation from billion-atom molecular dynamics simulation of solidification of pure metal. Nat Commun 8:10

    Article  Google Scholar 

  10. Kim WT, Kim SG, Lee JS, Suzuki T (2001) Equilibrium at stationary solid–liquid interface during phase-field modeling of alloy solidification. Metall Mater Trans A 32A:961–969

    Article  Google Scholar 

  11. Choudhury A, Reuther K, Wesner E, August A, Nestler B, Rettenmayr M (2012) Comparison of phase-field and cellular automaton models for dendritic solidification in Al–Cu alloy. Comput Mater Sci 55:263–268

    Article  Google Scholar 

  12. Gubicza J, Hegedűs Z, Lábár JL, Subramanya Sarma V, Kauffmann A, Freudenberger J (2014) Microstructure evolution during annealing of an SPD-processed supersaturated Cu-3at.%Ag alloy. IOP Conf Ser Mater Sci Eng 63:012091

    Article  Google Scholar 

  13. Long J, Zhang W, Wang Y, Du Y, Zhang Z, Lu B, Cheng K, Peng Y (2017) A new type of WC–Co–Ni–Al cemented carbide: grain size and morphology of γ′-strengthened composite binder phase. Scr Mater 126:33–36

    Article  Google Scholar 

  14. Ankit K, **ng H, Selzer M, Nestler B, Glicksman ME (2017) Surface rippling during solidification of binary polycrystalline alloy: insights from 3-D phase-field simulations. J Cryst Growth 457:52–59

    Article  Google Scholar 

  15. Long J, Li K, Chen F, Yi M, Du Y, Lu B, Zhang Z, Wang Y, Cheng K, Zhang K (2017) Microstructure evolution of WC grains in WC–Co–Ni–Al alloys: effect of binder phase composition. J Alloys Compd 710:338–348

    Article  Google Scholar 

  16. Zhang J, Poulsen SO, Gibbs JW, Voorhees PW, Poulsen HF (2017) Determining material parameters using phase-field simulations and experiments. Acta Mater 129:229–238

    Article  Google Scholar 

  17. Kang JL, Xu W, Wei XX, Ferry M, Li JF (2017) Solidification behavior of Co-Sn eutectic alloy with Nb addition. J Alloys Compd 695:1498–1504

    Article  Google Scholar 

  18. Jiang Y, Li D, Liang S, Zou J, Liu F (2017) Phase selection of titanium boride in copper matrix composites during solidification. J Mater Sci 52:2957–2963. https://doi.org/10.1007/s10853-016-0592-2

    Article  Google Scholar 

  19. Rodriguez JE, Kreischer C, Volkmann T, Matson DM (2017) Solidification velocity of undercooled Fe–Co alloys. Acta Mater 122:431–437

    Article  Google Scholar 

  20. Yao SW, Liu T, Liu CJ, Yang GJ, Li CX (2017) Epitaxial growth during the rapid solidification of plasma-sprayed molten TiO2 splat. Acta Mater 134:66–80

    Article  Google Scholar 

  21. Duan SY, Wu CL, Gao Z, Cha LM, Fan TW, Chen JH (2017) Interfacial structure evolution of the growing composite precipitates in Al–Cu–Li alloys. Acta Mater 129:352–360

    Article  Google Scholar 

  22. Wang F, Wu Z, Shangguan X, Sun Y, Feng J, Li Z, Chen L, Zuo S, Zhuo R, Yan P (2017) Preparation of mono-dispersed, high energy release, core/shell structure Al nanopowders and their application in HTPB propellant as combustion enhancers. Sci Rep 7:5228

    Article  Google Scholar 

  23. Sui M, Pandey P, Li MY, Zhang Q, Kunwar S, Lee J (2017) Au-assisted fabrication of nano-holes on c-plane sapphire via thermal treatment guided by Au nanoparticles as catalysts. Appl Surf Sci 393:23–39

    Article  Google Scholar 

  24. Sundaram A, Yang V, Yetter RA (2017) Metal-based nanoenergetic materials: synthesis, properties, and applications. Progr Energy Combust Sci 61:293–365

    Article  Google Scholar 

  25. Kaptay G (2012) Nano-Calphad: extension of the Calphad method to systems with nano-phases and complexions. J Mater Sci 47:8320–8335. https://doi.org/10.1007/s10853-012-6772-9

    Article  Google Scholar 

  26. Zhou N, Luo J (2014) Develo** thermodynamic stability diagrams for equilibrium-grain-size binary alloys. Mater Lett 115:268–271

    Article  Google Scholar 

  27. Lee J, Sim KJ (2014) General equations of CALPHAD-type thermodynamic description for metallic nanoparticle systems. Calphad 44:129–132

    Article  Google Scholar 

  28. Junkaew A, Ham B, Zhang X, Arróyave R (2014) Tailoring the formation of metastable Mg through interfacial engineering: a phase stability analysis. Calphad 45:145–150

    Article  Google Scholar 

  29. Atanasov I, Ferrando R, Johnston RL (2014) Structure and solid solution properties of Cu–Ag nano alloys. J Phys: Condens Matter 26:275301

    Google Scholar 

  30. Guenther G, Guillon O (2014) Models of size-dependent nanoparticle melting tested on gold. J Mater Sci 49:7915–7932. https://doi.org/10.1007/s10853-014-8544-1

    Article  Google Scholar 

  31. Kaptay G, Janczak-Rusch J, Pigozzi G, Jeurgens LPH (2014) Theoretical analysis of melting point depression of pure metals in different initial configurations. J Mater Eng Perform 23:1600–1607

    Article  Google Scholar 

  32. Bajaj S, Haverty MG, Arróyave R, Goddard WA III, Shankar S (2015) Phase stability in nanoscale material systems: extension from bulk phase diagrams. Nanoscale 7:9868–9877

    Article  Google Scholar 

  33. Sopoušek J, Zobač O, Vykoukal V, Buršík J, Roupcová P, Brož P, Pinkas J, Vřešťál J (2015) Temperature stability of AgCu nanoparticles. J Nanoparticle Res 17:478

    Article  Google Scholar 

  34. Minenkov AA, Bogatyrenko SI, Kryshtal AP (2015) Effect of size on eutectic temperature lowering in Ag–Ge layered films. PSE 13:383–389

    Google Scholar 

  35. Zhu J, Fu Q, Xue Y, Cui Z (2016) Comparison of different models of melting transformation of nanoparticles. J Mater Sci 51:2262–2269. https://doi.org/10.1007/s10853-016-9758-1

    Google Scholar 

  36. Ferrando R (2016) Theoretical and computational methods for nanoalloy structure and thermodynamics. Front Nanosci 10:75–129

    Article  Google Scholar 

  37. Kaptay G, Janczak-Rusch J, Jeurgens LPH (2016) Melting point depression and fast diffusion in nanostructured brazing fillers confined between barrier nanolayers. J Mater Eng Perform 25:3275–3284

    Article  Google Scholar 

  38. Guisbiers G, Mendoza-Perez R, Bazan-Diaz L, Mendoza-Cruz R, Velazquez-Salazar JJ, Jose-Yacaman M (2017) Size and shape effects on the phase diagrams of nickel-based bimetallic nanoalloys. J Phys Chem C 121:6930–6939

    Article  Google Scholar 

  39. Byrkin VA, Belogorlov AA, Paryohin DA, Mitrofanova AS (2017) Some features of pressure evolution in systems “non-wetting liquid/nanoporous medium” at impact intrusion. IOP Conf Ser J Phys Conf Ser 829:012020

    Article  Google Scholar 

  40. **ao-Hui W, Ming-Wen C, Zi-Dong W (2016) Analysis of spherical crystal dissolution in the solution. Acta Phys Sinica 65:038701

    Google Scholar 

  41. Turnbull D, Cech RE (1950) microscopic observation of the solidification of small metal droplets. J Appl Phys 21:804–810

    Article  Google Scholar 

  42. Glicksman ME, Vold CL (1969) Determination of absolute solid–liquid interfacial free energies in metals. Acta Metall 17:1–11

    Article  Google Scholar 

  43. Stowell MJ (1970) The solid–liquid interfacial free energy of lead from supercooling data. Philos Mag 22:1–6

    Article  Google Scholar 

  44. Glicksman ME, Vold CL (1971) Establishment of error limits on the solid–liquid interfacial free energy of bismuth. Scr Metall 5:493–498

    Article  Google Scholar 

  45. Nash GE, Glicksman ME (1972) A general method for determining solid–liquid interfacial free energies. Philos Mag 25:577–592

    Google Scholar 

  46. Eustathopoulos N, Coudurier L, Joud JC, Desre P (1976) Tension interfaciale solide-liquide des systemes Al–Sn, Al–In et Al–Sn–In. J Crystal Growth 33:105–115

    Article  Google Scholar 

  47. Passerone A, Sangiorgi R, Eustathopoulos N, Desré P (1979) Microstucture and interfacial tensions in Zn–In and Zn–Bi alloys. Metal Sci 13:359–365

    Article  Google Scholar 

  48. Mondolfo LF, Parisi NL, Kardys J (1984) Interfacial energies on low melting point metals. Mater Sci Eng 68:249–266

    Article  Google Scholar 

  49. Gunduz M, Hunt JD (1985) The measurement of solid–liquid surface energies in the Al–Cu, Al–Si and Pb–Sn systems. Acta Metall 33:1651–1672

    Article  Google Scholar 

  50. Gunduz M, Hunt JD (1989) Solid–liquid surface energy in the Al–Mg system. Acta Metall 37:1839–1845

    Article  Google Scholar 

  51. Cortella L, Vinet B (1995) Undercooling and nucleation studies on pure refractory metals processed in the Grenoble high-drop tube. Phil Mag 71:11–21

    Article  Google Scholar 

  52. Marasli N, Hunt JD (1996) Solid–liquid surface energies in the Al–CuAl2, Al–NiAl3, and Al–Ti systems. Acta Metall 44:1085–1096

    Google Scholar 

  53. Keslioglu K, Marasli N (2004) Experimental determination of solid–liquid interfacial energy for Zn solid solution in equilibrium with the Zn–Al eutectic liquid. Metal Mater Trans A 35A:3665–3672

    Article  Google Scholar 

  54. Morris JR, Napolitano RE (2004) Developments in determining the anisotropy of solid–liquid interfacial free energy. JOM 56:40–44

    Article  Google Scholar 

  55. Rogers RB, Ackerson BJ (2011) The measurement of solid–liquid interfacial energy in colloidal suspensions using grain boundary grooves. Phil Mag 91:682–729

    Article  Google Scholar 

  56. Paliwal M, Jung IH (2013) Solid/liquid interfacial energy of Mg–Al alloys. Metall Mater Trans A 44A(2013):1636–1640

    Article  Google Scholar 

  57. Kaptay G (2014) A method to estimate interfacial energy between eutectic solid phases from the results of eutectic solidification experiments. Mater Sci Forum 790–791:133–139

    Article  Google Scholar 

  58. Son S, Dong HB (2015) Measuring Solid–liquid interfacial energy by grain boundary groove profile method. Mater Today Proc 2:S306–S313

    Article  Google Scholar 

  59. Mondal S, Phukan M, Ghatak A (2015) Estimation of solid–liquid interfacial tension using curved surface of a soft solid. Proc Nat Acad Sci USA 112:12563–12568

    Article  Google Scholar 

  60. Ozturk E, Aksoz S, Altintas Y, Keslioglu K, Marasli N (2016) Experimental measurements of some thermophysical properties of solid CdSb intermetallic in the Sn–Cd–Sb ternary alloy. J Thermal Anal Calorimetry 126:1059–1065

    Article  Google Scholar 

  61. Maire E, Redston E, Gulda MP, Weitz DA, Spaepen F (2016) Imaging grain boundary grooves in hard-sphere colloidal bicrystals. Phys Rev E 94:042604

    Article  Google Scholar 

  62. Altıntas Y, Aksöz S, Keslioglu K, Marasli N (2016) The experimental determination of thermophysical properties of intermetallic CuAl2 phase in equilibrium with (Al + Cu + Si) liquid. J Chem Thermod 97:228–234

    Article  Google Scholar 

  63. Yoshimura R, Esaka H, Shinozuka K (2017) Influence of Zn addition on the solid/liquid interfacial energy in Sn–Ag alloy. J Jpn Inst Met Mater 81:264–269

    Article  Google Scholar 

  64. Turnbull D (1950) Fromation of crystal nuclei in liquid metals. J Appl Phys 21:1022–1028

    Article  Google Scholar 

  65. Turnbull D (1950) Correlation of liquid–solid interfacial energies calculated from supercooling of small droplets. J Chem Phys 18:769

    Article  Google Scholar 

  66. Skapski AS (1956) A next-neighbors theory of maximum undercooling. Acta Metall 4:583–585

    Article  Google Scholar 

  67. Hilliard JE, Cahn JW (1958) On the nature of the interface between a solid metal and its melt. Acta Metall 6:772–774

    Article  Google Scholar 

  68. Miller WA, Chandwik GA (1967) On the magnitude of the solid/liquid interfacial energy of pure metals and its relation to grain boundary melting. Acta Metall 15:607–614

    Article  Google Scholar 

  69. Ewing RH (1971) The free energy of the crystal-melt interface from the radial distribution function. J Crystal Growth 11:221–224

    Article  Google Scholar 

  70. Ewing RH (1972) The free energy of the crystal-melt interface from the radial distribution function -further calculations. Philos Mag 25:779–784

    Article  Google Scholar 

  71. Spaepen F (1975) A structural model for the solid–liquid interface in monatomic systems. Acta Metall 23:729–743

    Article  Google Scholar 

  72. Spaepen F, Meyer RB (1976) The surface tension in a structural model for the solid–liquid interface. Scripta Metall 10:257–263

    Article  Google Scholar 

  73. Waseda Y, Miller WA (1978) Calculation of the crystal -melt interfacial free energy from experimental radial distribution function data. Trans JIM 19:546–552

    Article  Google Scholar 

  74. Miedema AR, den Broeder FJA (1979) On the interfacial energy on solid–liquid and solid- solid metal combinations. Z Metall 70:14–20

    Google Scholar 

  75. Battezzati L (2001) Thermodynamic quantities in nucleation. Mater Sci Eng, A 304–306:103–107

    Article  Google Scholar 

  76. Gránásy L, Tegze M, Ludwig A (1991) Solid–liquid interfacial free energy. Mater Sci Eng, A 133:577–580

    Article  Google Scholar 

  77. Gránásy L, Tegze M (1991) Crystal- melt interfacial free energy of elements and alloys. Mater Sci Forum 77:243–256

    Article  Google Scholar 

  78. Spaepen F (1994) Homogeneous nucleation and the temperature dependence of the crystal interfacial tension. Solid States Phys 47:1–32

    Article  Google Scholar 

  79. Jiang Q, Shi HX, Zhao M (1999) Free energy of crystal-liquid interface. Acta Mater 47:2109–2112

    Article  Google Scholar 

  80. Kaptay G (2001) A model for the solid–liquid interfacial energies of pure metals. Trans Join Weld Res Inst 30(Special Issue):245–250

    Google Scholar 

  81. Jian Z, Kuribayashi K, Jie W (2002) Solid–liquid interface energy of metals at melting point and undercooled state. Mater Trans 43:721–726

    Article  Google Scholar 

  82. Kaptay G (2005) Modeling interfacial energies in metallic systems. Mater Sci Forum 473–474:1–10

    Article  Google Scholar 

  83. Jian Z, Li N, Zhu M, Chen J, Hang FC, Jie W (2012) Temperature dependence of the crystal-melt interfacial energy of metals. Acta Mater 60:3590–3603

    Article  Google Scholar 

  84. Zhou H, Lin X, Wang M, Huang W (2013) Calculation of crystal-melt interfacial free energies of fcc metals. J Cryst Growth 366:82–87

    Article  Google Scholar 

  85. Owolabi TO, Akande KO, Olatunji SO (2016) Computational intelligence method of estimating solid–liquid interfacial energy of materials at their melting temperatures. J Intell Fuzzy Systems 31:519–527

    Article  Google Scholar 

  86. Eustathopoulos N, Joud J-C, Desre P (1972) Etude thermodynamique de la tension interfaciale solide/liquide pour un systeme metallique binaire. J Chim Phys 60:1600–1605

    Google Scholar 

  87. Eustathopoulos N, Joud J-C, Desre P (1974) Etude thermodinamique de la tension inetrfaciale solide/liquide pour un systeme metallique binaire. J Chim Phys 71:777–787

    Article  Google Scholar 

  88. Warren R (1980) Solid–liquid interfacial energies in binary and pseudo-binary systems. J Mater Sci 15:2489–2496. https://doi.org/10.1007/BF00550752

    Article  Google Scholar 

  89. Camel D (1980) Chemical adsorption and temperature dependence of the solid–liquid interfacial tension of metallic binary alloys. Acta Metall 28:239–247

    Article  Google Scholar 

  90. Chatain D, Pique D, Coudurier L, Eustathopoulos N (1985) Calculation of the solid–liquid interfacial tension in metallic ternary systems. J Mater Sci 20:2233–2244. https://doi.org/10.1007/BF01112309

    Article  Google Scholar 

  91. Shimizu I, Takei Y (2005) Thermodynamics of interfacial energy in binary metallic systems: influence of adsorption on dihedral angles. Acta Mater 53:811–821

    Article  Google Scholar 

  92. Lippmann S, Jung IH, Paliwal M, Rettenmayr M (2016) Modelling temperature and concentration dependent solid/liquid interfacial energies. Philos Mag 96:1–14

    Article  Google Scholar 

  93. Bonissent A, Mutaftschiev B (1977) A computer built random model for simulation of the crystal-melt interface. Philos Mag 35:65–73

    Article  Google Scholar 

  94. Luo SN, Ahrens TJ, Cagin T, Strachan A, Goddard WA III, Swift DC (2003) Maximum superheating and undercooling: systematics, molecular dynamics simulations, and dynamic experiments. Phys Rev B 68:134206

    Article  Google Scholar 

  95. Wu L, Xu B, Li Q, Liu W (2015) Anisotropic crystal-melt interfacial energy and stiffness of aluminum. J Mater Res 30:1827–1835

    Article  Google Scholar 

  96. **a Y, Li CH, Luan YW, Han XJ, Li JG (2016) Molecular dynamics studies on the correlation of undercoolability and thermophysical properties of liquid Ni–Al alloys. Comp Mater Sci 112:383–394

    Article  Google Scholar 

  97. Liu S, Wang Z, Shi Z, Zhou Y, Yang Q (2017) Experiments and calculations on refining mechanism of NbC on primary M7C3 carbide in hypereutectic Fe–Cr–C alloy. J Alloys Compd 713:108–118

    Article  Google Scholar 

  98. Qi C, Xu B, Kong LT, Li JF (2017) Solid–liquid interfacial free energy and its anisotropy in the Cu–Ni binary system investigated by molecular dynamics simulations. J Alloys Compd 708:1073–1080

    Article  Google Scholar 

  99. Kaptay G (2012) On the interfacial energy of coherent interfaces. Acta Mater 60:6804–6813

    Article  Google Scholar 

  100. Butler JAV (1932) The thermodynamics of the surfaces of solutions. Proc R Soc A 135:348–375

    Article  Google Scholar 

  101. Kaptay G (2005) A method to calculate equilibrium surface phase transition lines in monotectic systems. Calphad 29:56–67 and 262

    Article  Google Scholar 

  102. Mekler C, Kaptay G (2008) Calculation of surface tension and surface phase transition line in binary Ga–Tl system. Mater Sci Eng, A 495:65–69

    Article  Google Scholar 

  103. Costa C, Delsante S, Borzone G, Zivkovic D, Novakovic R (2014) Thermodynamic and surface properties of liquid Co–Cr–Ni alloys. J Chem Thermod 69:73–84

    Article  Google Scholar 

  104. Brillo J, Kolland G (2016) Surface tension of liquid Al–Au binary alloys. J Mater Sci 51:4888–4901. https://doi.org/10.1007/s10853-016-9794-x

    Article  Google Scholar 

  105. Jha IS, Khadka R, Koirala RP, Singh BP, Adhikari D (2016) Theoretical assessment on mixing properties of liquid Tl–Na alloys. Philos Mag 96:1664–1683

    Article  Google Scholar 

  106. Pelegrina JL, Gennari FC, Condó AM, Guillemet AF (2016) Predictive Gibbs-energy approach to crystalline/amorphous relative stability of nanoparticles: size effect calculations and experimental test. J Alloys Compd 689:161–168

    Article  Google Scholar 

  107. Wessing JJ, Brillo J (2017) Density, molar volume, and surface tension of liquid Al–Ti. Metall Mater Trans A 48:868–882

    Article  Google Scholar 

  108. Kim Y, Kim HG, Kang Y-B, Kaptay G, Lee JH (2017) Prediction of phase separation in immiscible Ga–Tl alloys. Metall Mater Trans A 48A:2701–2705

    Google Scholar 

  109. Kaptay G (2015) On the partial surface tension of components of a solution. Langmuir 31:5796–5804

    Article  Google Scholar 

  110. Korozs J, Kaptay G (2017) Derivation of the Butler equation from the requirement of the minimum Gibbs energy of a solution phase, taking into account its surface area. Coll Surf A 533:296–301

    Article  Google Scholar 

  111. Brillo J, Schmid-Fetzer R (2014) A model for the prediction of liquid–liquid interfacial energies. J Mater Sci 49:3674–3680. https://doi.org/10.1007/s10853-014-8074-x

    Article  Google Scholar 

  112. Weltsch Z, Lovas A, Takács J, Cziráki Á, Tóth A, Kaptay G (2013) Measurement and modelling of the wettability of graphite by a silver–tin (Ag–Sn) liquid alloy. Appl Surf Sci 268:52–60

    Article  Google Scholar 

  113. Kaptay G (2016) Modeling equilibrium grain boundary segregation, grain boundary energy and grain boundary segregation transition by the extended Butler equation. J Mater Sci 51:1738–1755. https://doi.org/10.1007/s10853-015-9533-8

    Article  Google Scholar 

  114. Tallon JL (1980) The entropy change on melting of simple substance. Phys Lett A 76:139–142

    Article  Google Scholar 

  115. Kaptay G (2008) A unified model for the cohesive enthalpy, critical temperature, surface tension and volume thermal expansion coefficient of liquid metals of bcc, fcc and hcp crystals. Mater Sci Eng, A 495:19–26

    Article  Google Scholar 

  116. Topuridze NI, Hantadze DV (1978) Uchot geometricheskogo faktora pri raschote izbitochnogo obioma rastvora. Zh Fiz Himii LII 81–84

  117. Lemaignan C (1980) Hard spheres simulation of the size effect in liquid and amorphous metallic alloys. Acta Metall 28:1657–1661

    Article  Google Scholar 

  118. Liu S, Napolitano RE, Trivedi R (2001) Measurement of anisotropy of crystal-melt interfacial energy for a binary Al–Cu system. Acta Mater 49:4271–4276

    Article  Google Scholar 

  119. Kaptay G (2015) Approximated equations for molar volumes of pure solid fcc metals and their liquids from zero Kelvin to above their melting points at standard pressure. J Mater Sci 50:678–687. https://doi.org/10.1007/s10853-014-8627-z

    Article  Google Scholar 

  120. Emsley J (1989) The Elements. Clarendon Press, Oxford

    Google Scholar 

  121. Engin S, Böyük U, Marasli N (2009) Determination of interfacial energies in the Al–Ag and Sn–Ag alloys by using Bridgman type solidification apparatus. J Alloys Compd 488:138–143

    Article  Google Scholar 

  122. Massalski TB (ed) (1990) Binary alloy phase diagrams, vol 3, 2nd edn. ASM International, Materials Park, Ohio, USA

  123. Witusiewicz VT, Hecht U, Fries SG, Rex S (2005) The Ag–Al–Cu system. I. Reassessment of the constituent binary system. J Alloys Compd 385:133–143

    Google Scholar 

  124. Ansara I, Dupin N, Lukas HL, Sundman B (1997) Thermodynamic assessment of the Al-Ni system. J Alloys Compd 247:20–30

    Article  Google Scholar 

  125. Bulla A, Carreno-Bodensiek C, Pustal B, Berger R, Buhrig-Polaczek A, Ludwig A (2007) Determination of the solid–liquid interface energy in the Al–Cu–Ag system. Metall Mater Trans A 38A:1956–1964

    Article  Google Scholar 

  126. Keslioglu K, Ocak Y, Aksöz S, Marasli N, Cadirli E, Kaya H (2010) Determination of interfacial energies for solid Al solution in equilibrium with Al–Cu–Ag liquid. Met Mater Int 16:51–59

    Article  Google Scholar 

  127. Witusiewicz VT, Hecht U, Fries SG, Rex S (2005) The Ag–Al–Cu system II. A thermodynamic evaluation of the ternary system. J Alloys Compd 387:217–227

    Article  Google Scholar 

Download references

Acknowledgements

This work was financed by the GINOP 2.3.2–15–2016–00027 Project. The author is grateful for the motivating discussion to Liyung Zhang and Yong Du (Central South University, Changsha, China), Stephanie Lippmann (Friedrich Schiller University Jena, Germany), In-Ho Jung (McGill University, Montreal, Canada), Ely Brosh (NRCN, Beer-Sheva, Israel), as well as to Tamas Mende and Andras Dezso (both University of Miskolc, Hungary).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Kaptay.

Additional information

After this paper was accepted, the following relevant paper was electronically published: C.Zhang, Y.Du: A novel thermodynamic model for obtaining solid–liquid interfacial energies. Metall Mater Trans A (2017), DOI https://doi.org/10.1007/s11661-017-4365-6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaptay, G. On the solid/liquid interfacial energies of metals and alloys. J Mater Sci 53, 3767–3784 (2018). https://doi.org/10.1007/s10853-017-1778-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1778-y

Keywords

Navigation