Log in

Investigation of Pb in Gannan Navel Orange with Contaminant in Controlled Conditions by Laser-Induced Breakdown Spectroscopy

  • Published:
Journal of Applied Spectroscopy Aims and scope

Single-pulse laser-induced breakdown spectroscopy (LIBS) was applied at natural atmosphere for proving its feasibility of determining heavy metals in Gannan Navel orange fruits treated with contaminant in controlled lab conditions. The characteristic spectral line Pb I 405.78 nm was selected, and the LIBS experimental conditions (mainly the laser energy and delay time) were optimized in order to acquire better spectral quality in the measured spectra of orange peels. The conventional elemental analysis technique, atomic absorption spectrometry (AAS), was used to investigate the real concentration of orange peels samples. The results of AAS analysis provided better accuracy and precision compared with LIBS. A calibration curve of the LIBS intensity vs AAS concentration of Pb element was constructed. Quantitative analytical results obtained by the curve were validated with AAS measurements. The presented results showed that standard deviations of the LIBS measurements are in general much larger than those of AAS measurements. Mostly, this was due to the matrix effect of samples and instability of LIBS. The agreement between LIBS and AAS demonstrates the ability of LIBS to determine the concentration of Pb in oranges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Q. Lei, J. El Haddad, and V. Motto-Ros, Anal. Bioanal. Chem., 400, 3303–3313 (2011).

    Article  Google Scholar 

  2. Y. Aono, K. Ando, and N. Hattori, J. Wood Sci., 58, No. 4 (2012) 363–368; doi 10.1007/s10086-012-1256-8.

    Article  Google Scholar 

  3. S. Shukla, Prashant Kumar Rai, and S. Chatterji, Food Biophys., 7, 43–49 (2012).

    Article  Google Scholar 

  4. K. K. Ayyalasomayajula, V. Dikshit, and F. Yu Yueh, Anal. Bioanal. Chem., 400, 3315–3322 (2011).

    Article  Google Scholar 

  5. S. Pandhija, N. K. Rai, A. K. Rai, and S. N. Thakur, Appl. Phys. B, 98, 231–241 (2010).

    Article  ADS  Google Scholar 

  6. A. Nevin, G. Spoto, and D. Anglos, Appl. Phys. A, 106, 339–361 (2012).

    Article  ADS  Google Scholar 

  7. X. Fang and S. R. Ahmad, Appl. Phys. B, 106, 453–456 (2012).

    Article  ADS  Google Scholar 

  8. J. Paldyna, B. Krasnodebska-Ostrega, and K. Kregielewska, Environ. Earth. Sci., 68, 439–450 (2013).

    Article  Google Scholar 

  9. Chemicals Branch, DTIE, United Nations Environment Programme, 12, 38–58 (2010).

    Google Scholar 

  10. M. Galiová, J. Kaiser, and K. Novotny, Appl. Phys. A, 93, 917–922 (2008).

    Article  ADS  Google Scholar 

  11. M. da Silva Gomes, D. Santos, Jr., and L. C. Nunes, Talanta, 85, No. 4, 1744–1750 (2011).

    Article  Google Scholar 

  12. S. Krizkova, P. Ryant, and O. Krystofova, Sensors, 8, 445–463 (2008).

    Article  Google Scholar 

  13. L. C. Trevizan, D. Santos, Jr., and R. Elgul Samad, Spectrochim. Acta, B, 64, 369–377 (2009).

    Article  ADS  Google Scholar 

  14. L. C. Trevizan, D. Santos, Jr., and R. Elgul Samad, Spectrochim. Acta, B, 63, 1151–1158 (2008).

    Article  ADS  Google Scholar 

  15. L. Ponce, T. Flores, and A. Arronte, AIP Conf. Proc., 992, 1268–1273 (2007).

    Article  ADS  Google Scholar 

  16. J. Kaiser, O. Samek, and L. Reale, Microsc. Res. Tech., 70, 147–153 (2007).

    Article  Google Scholar 

  17. V. Juvé, R. Portelli, and M. Boueri, Spectrochim. Acta, B, 63, 1047–1053 (2008).

    Article  ADS  Google Scholar 

  18. W. Lei, V. Motto-Ros, and M. Boueri, Spectrochim. Acta, B, 64, 891–898 (2009).

    Article  ADS  Google Scholar 

  19. M. Galiova and J. Kaiser, Microsc. Res. Tech., 7, No. 4, 845–852 (2011).

    Google Scholar 

  20. J. Kaiser, M. Galiová, and K. Novotný, Spectrochim. Acta, B, 64, 67–73 (2009).

    Article  ADS  Google Scholar 

  21. Huang Lin, Yao Mingyin, Lin **long, Liu Muhua, and He **uwen, Zh. Prikl. Spektrosk., 80, No. 6, 964.1—964.5 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. Huang or M. Yao.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 81, No. 5, pp. 777–781, September–October, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Huang, L., Yao, M. et al. Investigation of Pb in Gannan Navel Orange with Contaminant in Controlled Conditions by Laser-Induced Breakdown Spectroscopy. J Appl Spectrosc 81, 850–854 (2014). https://doi.org/10.1007/s10812-014-0015-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-014-0015-6

Keywords

Navigation