Log in

Comparative measurements of mineral elements in milk powders with laser-induced breakdown spectroscopy and inductively coupled plasma atomic emission spectroscopy

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Mineral elements contained in commercially available milk powders, including seven infant formulae and one adult milk, were analyzed with inductively coupled plasma atomic emission spectrometry (ICP-AES) and laser-induced breakdown spectroscopy (LIBS). The purpose of this work was, through a direct comparison of the analytical results, to provide an assessment of the performance of LIBS, and especially of the procedure of calibration-free LIBS (CF-LIBS), to deal with organic compounds such as milk powders. In our experiments, the matrix effect was clearly observed affecting the analytical results each time laser ablation was employed for sampling. Such effect was in addition directly observed by determining the physical parameters of the plasmas induced on the different samples. The CF-LIBS procedure was implemented to deduce the concentrations of Mg and K with Ca as the internal reference element. Quantitative analytical results with CF-LIBS were validated with ICP-AES measurements and nominal concentrations specified for commercial milks. The obtained good results with the CF-LIBS procedure demonstrate its capacity to take into account the difference in physical parameters of the plasma in the calculation of the concentrations of mineral elements, which allows a significant reduction of the matrix effect related to laser ablation. We finally discuss the way to optimize the implementation of the CF-LIBS procedure for the analysis of mineral elements in organic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cremers DA, Radziemski LJ (2006) Handbook of laser-induced breakdown spectroscopy. Wiely, Chichester

    Book  Google Scholar 

  2. Miziolek AW, Palleschi V, Schechter I (eds) (2006) Laser-induced breakdown spectroscopy: fundamentals and applications. Cambridge University Press, Cambridge

    Google Scholar 

  3. Cremers DA, Chinni RC (2009) Laser-induced breakdown spectroscopy—capabilities and limitations. Appl Spectrosc Rev 44:457–506

    Article  CAS  Google Scholar 

  4. Gaudiuso R, Dell’Aglio M, De Pascale O, Senesi GS, De Giacomo A (2010) Laser induced breakdown spectroscopy for elemental analysis in environmental, cultural heritage and space applications: a review of methods and results. Sensors 10:7434–7468

    Article  CAS  Google Scholar 

  5. Corsi M, Cristoforetti G, Palleschi V, Salvetti A, Tognoni E (2001) A fast and accurate method for the determination of precious alloys caratage by laser induced plasma spectroscopy. Eur Phys J D 13:373–377

    Article  CAS  Google Scholar 

  6. Bulajic D, Corsi M, Cristoforetti G, Legnaioli S, Palleschi V et al (2002) A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy. Spectrochim Acta B 57:339–353

    Article  Google Scholar 

  7. Gornushkin IB, Anzano JM, King LA, Smith BW, Omenetto N et al (1999) Curve of growth methodology applied to laser-induced plasma emission spectroscopy. Spectrochim Acta B 54:491–503

    Article  Google Scholar 

  8. Mohamed WTY (2008) Improved LIBS limit of detection of Be, Mg, Si, Mn, Fe and Cu in aluminum alloy samples using a portable Echelle spectrometer with ICCD camera. Opt Laser Technol 40:30–38

    Article  CAS  Google Scholar 

  9. Ciucci A, Corsi M, Palleschi V, Rastelli S, Salvetti A et al (1999) New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy. Appl Spectrosc 53:960–964

    Article  CAS  Google Scholar 

  10. Fornarini L, Colao F, Fantoni R, Lazic V, Spizzicchino V (2005) Calibration analysis of bronze samples by nanosecond laser induced breakdown spectroscopy: a theoretical and experimental approach. Spectrochim Acta B 60:1186–1201

    Article  Google Scholar 

  11. Herrera K, Tognoni E, Omenetto N, Gornushkin IB, Smith BW et al (2009) Comparative study of two standard-free approaches in laser-induced breakdown spectroscopy as applied to the quantitative analysis of aluminum alloy standards under vacuum conditions. J Anal At Spectrom 24:426–438

    Article  CAS  Google Scholar 

  12. Portnov A, Rosenwaks S, Bar I (2003) Emission following laser-induced breakdown spectroscopy of organic compounds in ambient air. Appl Opt 42:2835–2842

    Article  CAS  Google Scholar 

  13. Barbini R, Colao F, Fantoni R, Palucci A, Ribezzo S et al (1997) Semi-quantitative time resolved LIBS measurements. Appl Phys B 65:101–107

    Article  CAS  Google Scholar 

  14. Juvé V, Portelli R, Boueri M, Baudelet M, Yu J (2008) Space-resolved analysis of trace elements in fresh vegetables using ultraviolet nanosecond laser-induced breakdown spectroscopy. Spectrochim Acta B 63:1047–1053

    Article  Google Scholar 

  15. Pandhija S, Rai NK, Rai AK, Thakur SN (2010) Contaminant concentration in environment samples using LIBS and CF-LIBS. Appl Phys B 98:231–241

    Article  CAS  Google Scholar 

  16. Corsi M, Cristoforetti G, Hidalgo M, Legnaioli S, Palleschi V (2003) Application of laser-induced breakdown spectroscopy technique to hair tissue mineral analysis. Appl Opt 42:6133–6137

    Article  CAS  Google Scholar 

  17. Senesi GS, Dell’Aglio M, Gaudiuso R, De Giacomo A, Zaccone C et al (2009) Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium. Environ Res 109:413–420

    Article  CAS  Google Scholar 

  18. Eppler AS, Cremers DA, Hickmott DD, Ferris MJ, Koskelo AC (1996) Matrix effects in the detection of Pb and Ba in soils using laser-induced breakdown spectroscopy. Appl Spectrosc 50:1175–1181

    Article  CAS  Google Scholar 

  19. Gornushkin SI, Gornushkin IB, Anzano JM, Smith BW, Winefordner JD (2002) Effective normalization technique for correction of matrix effects in laser-induced breakdown spectroscopy detection of magnesium in powdered samples. Appl Spectrosc 56:433–436

    Article  CAS  Google Scholar 

  20. Tognoni E, Cristoforetti G, Legnaioli S, Palleschi V (2010) Calibration-free laser-induced breakdown spectroscopy: state of the art. Spectrochim Acta B 65:1–14

    Article  Google Scholar 

  21. Burakov VS, Kiris VV, Naumenkov PA, Raikov SN (2004) Calibration-free laser spectral analysis of glasses and copper alloys. J Appl Spectrosc 71:740–746

    Article  CAS  Google Scholar 

  22. Singh VK, Singh V, Rai AK, Thakur SN, Rai PK, Singh JP (2008) Quantitative analysis of gallstones using laser-induced breakdown spectroscopy. Appl Opt 47:G38–G47

    Article  Google Scholar 

  23. Praher B, Palleschi V, Viskup V, Heitz J, Pedarnig JD JD (2010) Calibration free laser-induced breakdown spectroscopy of oxide materials, Spectrochim. Acta B 65:671–679

    Article  Google Scholar 

  24. De Giacomo A, Dell’Aglio M, De Pascale O, Longo S, Capitelli M (2007) Laser induced breakdown spectroscopy on meteorites. Spectrochim Acta B 62:1606–1611

    Article  Google Scholar 

  25. Herrera K, Tognoni E, Smith BW, Omenetto N, Winefordner JD (2009) Semiquantitative analysis of metal alloys, brass and soil samples by calibration-free laser-induced breakdown spectroscopy: recent results and considerations. J Anal At Spectrom 24:413–425

    Article  CAS  Google Scholar 

  26. Lei WQ, Mottoros V, Boueri M, Ma QL, Zhang DC et al (2009) Time-resolved characterization of laser-induced plasma from fresh potatoes. Spectrochim Acta B 64:891–898

    Article  Google Scholar 

  27. Schramel P (1983) Consideration of inductively coupled plasma spectroscopy for trace element analysis in the bio-medical and environmental fields. Spectrochim Acta B 38:199–206

    Article  Google Scholar 

  28. Nobrega JA, Gelinas Y, Krushevska A (1997) Direct determination of major and trace elements in milk by inductively coupled plasma atomic emission and mass spectrometry. J Anal At Spectrom 12:1243–1246

    Article  CAS  Google Scholar 

  29. McKinstry PJ, Indyk HE, Kim ND (1999) The determination of major and minor elements in milk and infant formula by slurry nebulisation and inductively coupled plasma-optical emission spectrometry (ICP-OES). Food Chem 65:245–252

    Article  CAS  Google Scholar 

  30. Ferreira EC, Menezes EA, Matos WO, Milori DMBP, Nogueria ARA et al (2010) Determination of Ca in breakfast cereals by laser induced breakdown spectroscopy. Food Control 21:1327–1330

    Article  CAS  Google Scholar 

  31. Trevizan LC Jr, DS SRE, Jr NDV, Nunes LC et al (2009) Evaluation of LIBS for the determination of micronutrients in plant materials. Spectrochim Acta B 64:369–377

    Article  Google Scholar 

  32. Pouzar M, Cernohorsky T, Prusova M, Prokopcakova P, Krejcova A (2009) LIBS analysis of crop plants. J Anal At Spectrom 24:953–957

    Article  CAS  Google Scholar 

  33. Stankova A, Dutruch L, Gilon N, Kanicky V (2011) Comparison of LA-ICP-MS and LA-ICP-OES for the analysis of some elements in fly ashes. J Anal At Spectrom (in press)

  34. Stankova A, Dutruch L, Gilon N, Kanicky V (2010) A simple LIBS method for fast quantitative analysis of fly ashes. Fuel 89:3468–3474

    Article  CAS  Google Scholar 

  35. El Sherbini AM, El Sherbini ThM, Hegazy H, Cristoforetti H, Legnaioli S, Palleschi V, Pardini L, Salvetti A, Tognoni E (2005) Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements. Spectrochim Acta B 60:1573–1579

    Article  Google Scholar 

  36. El Sherbini AM, Hegazy H, El Sherbini ThM (2006) Measurement of the electron density utilizing the Hα-line from laser produced plasma in air. Spectrochim Acta B 61:532–539

    Article  Google Scholar 

  37. Griem HR (1974) Spectral line broadening by plasmas. Academic Press, New York

    Google Scholar 

  38. De Lucia FC Jr, Harmon RS, McNesby KL, Winkel RJ Jr, Miziolek AW (2003) Laser-induced breakdown spectroscopy analysis of energetic materials. Appl Optics 42:6148–6152

    Article  Google Scholar 

  39. Sun L, Yu H (2009) Correction of self-absorption effect in calibration-free laser-induced breakdown spectroscopy by an internal reference method. Talanta 79:388–395

    Article  CAS  Google Scholar 

  40. Pandhija S, Rai AK (2009) In situ multielemental monitoring in coral skeleton by CF-LIBS. Appl Phys B 94:545–552

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the French Rhone-Alps Region for their support through the CMIRA international collaboration program for the French-Chinese Joint Laboratory for Laser Physics and Applications (JILLPA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Yu.

Additional information

Published in the special issue Laser-Induced Breakdown Spectroscopy with Guest Editors Jagdish P. Singh, Jose Almirall, Mohamad Sabsabi, and Andrzej Miziolek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lei, W.Q., El Haddad, J., Motto-Ros, V. et al. Comparative measurements of mineral elements in milk powders with laser-induced breakdown spectroscopy and inductively coupled plasma atomic emission spectroscopy. Anal Bioanal Chem 400, 3303–3313 (2011). https://doi.org/10.1007/s00216-011-4813-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-4813-x

Keywords

Navigation