Log in

Red alga Palmaria palmata—growth rate and photosynthetic performance under elevated CO2 treatment

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Marine macroalgae offer a feasible solution for reducing CO2 emissions by fixing CO2 as algal biomass and thus providing a source of renewable energy. The perennial red alga Palmaria palmata was cultivated and supplied with increased CO2 concentrations starting with 22 μmol kg−1 (pH 8.53) to 9770 μmol kg−1 (pH 6.04). Experiments covered test periods of 28 days, 7 days, and 2 h to examine the possible influence of different treatment durations. Biomass productivity over 28 days showed an increased production rate, which continuously declined with increasing CO2 concentration. After 7 days, the productivity was below the controls, suggesting a lag phase or necessary adaptation period to elevated CO2 concentrations of more than 7 days. Concerning the effects on maximum electron transport rate (ETRmax), light-harvesting efficiency (alpha), and light saturation of the photosynthetic electron transport (E k ), a stimulating influence was identified with the effect becoming more significant the shorter the test period was. The treatment with elevated CO2 concentrations for 28 days led to a decrease in photochemical efficiency (Y(II)) and regulated nonphotochemical energy dissipation (Y(NPQ)). In contrast, the treatment duration of 7 days predominantly increased photochemical quenching whereas the 2-h treatment resulted in a significant increase in photochemical quenching and in a significant decrease in nonregulated nonphotochemical energy dissipation. Hence, elevated CO2 concentrations over a prolonged time period interfered more distinctively with the fluorescence quenching ability of P. palmata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen E, Wall DM, Herrmann C, **a A, Murphy JD (2015) What is the gross energy yield of third generation gaseous biofuel sourced from seaweed? Energy 81:352–360

    Article  CAS  Google Scholar 

  • Beardall J, Giordano M (2002) Ecological implications of microalgal and cyanobacterial CO2 concentrating mechanisms and their regulation. Funct Plant Biol 29:335–347

    Article  CAS  Google Scholar 

  • Bidwell RGS, McLachlan J, Lloyd NDH (1985) Tank cultivation of Irish Moss Chondrus crispus Stackh. Bot Mar 28:87–97

    Article  Google Scholar 

  • Bilger W, Björkman O, Thayer SS (1989) Light-induced spectral absorbance changes in relation to photosynthesis and the epoxidation state of xanthophyll cycle components in cotton leaves. Plant Physiol 91:542–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production processing and extractions of biofuels and coproducts. Renew Sust Energ Rev 14:557–577

    Article  CAS  Google Scholar 

  • Bruhn A, Dahl J, Nielsen HB, Nikolaisen L, Rasmussen MB, Markager S, Olesen B, Arias C, Jensen PD (2011) Bioenergy potential of Ulva lactuca: biomass yield methane production and combustion. Bioresour Technol 102:2595–2604

    Article  CAS  PubMed  Google Scholar 

  • Celis-Plá PSM, Hall-Spencer JM, Horta PA, Milazzo M, Korbee N, Cornwall CE, Figueroa FL (2015) Macroalgal responses to ocean acidification depend on nutrient and light levels. Front Mar Sci 2:26

  • Chen S, Beardall J, Gao K (2014) A red tide alga grown under ocean acidification upregulates its tolerance to lower pH by increasing its photophysiological functions. Biogeosciences 11:4829–4838

    Article  Google Scholar 

  • Chen B, Zou D, Ma J (2016) Interactive effects of elevated CO2 and nitrogen–phosphorus supply on the physiological properties of Pyropia haitanensis (Bangiales, Rhodophyta. J Appl Phycol 28:1235–1243

  • Chynoweth DP (2005) Colloquium Proceedings: Renewable biomethane from land and ocean energy crops and organic wastes. HortSci 40:283–286

    CAS  Google Scholar 

  • De Paula Silva PH, de Nys R, Paul NA (2012) Seasonal growth dynamics and resilience of the green tide alga Cladophora coelothrix in high-nutrient tropical aquaculture. Aquacult Environ Interact 2:253–266

  • De Paula Silva PH, Paul NA, De Nys R, Mata L (2013) Enhanced production of green tide algal biomass through additional carbon supply. PLoS One 8:e81164

    Article  PubMed  PubMed Central  Google Scholar 

  • Demetropoulos CL, Langdon CJ (2004a) Enhanced production of Pacific dulse (Palmaria mollis) for co-culture with abalone in a land-based system: effects of stocking density, light, salinity and temperature. Aquaculture 235:471–488

    Article  Google Scholar 

  • Demetropoulos CL, Langdon CJ (2004b) Enhanced production of Pacific dulse (Palmaria mollis) for co-culture with abalone in a land-based system: nitrogen phosphorus and trace metal nutrition. Aquaculture 235:433–455

    Article  CAS  Google Scholar 

  • Demetropoulos CL, Langdon CJ (2004c) Enhanced production of Pacific dulse (Palmaria mollis) for co-culture with abalone in a land-based system: effects of seawater exchange pH and inorganic carbon concentration. Aquaculture 235:457–470

    Article  CAS  Google Scholar 

  • Dickson AG (1990) Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K. Deep-Sea Res A 37:755–766

    Article  CAS  Google Scholar 

  • Dincer I (2000) Renewable energy and sustainable development: a crucial review. Renew Sust Energ Rev 4:157–175

    Article  Google Scholar 

  • Engle CR, Balakrishnan R, Hanson TR, Molnar JJ (1997) Economic considerations. In: Egna HS, Boyd CE (eds) Dynamics of pond aquaculture. CRC Press, New York, pp. 377–395

    Google Scholar 

  • Enríquez S, Borowitzka MA (2010) The use of the fluorescence signal in studies of seagrasses and macroalgae. In: Suggett DJ, Prásil O, Borowitzka MA (eds) Chlorophyll a fluorescence in aquatic sciences - methods and applications. Springer, Dordrecht, pp. 187–208

    Chapter  Google Scholar 

  • Ernst DH (2000) Aqua Farm: simulation and decision-support software for aquaculture facility design and management planning. Dissertation, Oregon State University

  • Evans F, Langdon CJ (2000) Co-culture of dulse Palmaria mollis and red abalone Haliotis rufescens under limited flow conditions. Aquaculture 185:137–158

  • Falk S, Palmqvist K (1992) Photosynthetic light utilization efficiency, photosystem II heterogeneity, and fluorescence quenching in Chlamydomonas reinhardtii during the induction of the CO2-concentrating mechanism. Plant Physiol 100:685–691

  • Figueroa FL, Barufi JB, Malta EJ, Conde-Álvarez R, Nitschke U, Arenas F, Mata M, Connan S, Abreu MH, Marquardt R, Vaz-Pinto F, Konotchick T, Celis-Plá PSM, Hermoso M, Ordoñez G, Ruiz E, Flores P, de los Ríos J, Kirke D, Chow F, Nassar CAG, Robledo D, Pérez-Ruzafa A, Bañares-España E, Altamirano M, Jiménez C, Korbee N, Bischof K, Stengel DB (2014a) Short-term effects of increasing CO2, nitrate and temperature on three Mediterranean macroalgae: biochemical composition. Aquat Biol 22:177–193

    Article  Google Scholar 

  • Figueroa FL, Malta EJ, Bonomi-Barufi J, Conde-Álvarez R, Nitschke U, Arenas F (2014b) Short-term effects of increasing CO2, nitrate and temperature on three Mediterranean macroalgae: biochemical composition. Aquat Biol 22:177–193

    Article  Google Scholar 

  • Friedlander M, Levy I (1995) Cultivation of Gracilaria in outdoor tanks and ponds. J Appl Phycol 7:315–324

    Article  Google Scholar 

  • Fritsche UR, Sims REH, Monti A (2010) Direct and indirect land-use competition issues for energy crops and their sustainable production – an overview. Biofuels Bioprod Biorefin 4:692–704

    Article  CAS  Google Scholar 

  • Gao K, McKinley KR (1994) Use of macroalgae for marine biomass production and CO2 remediation: a review. J Appl Phycol 6:45–60

    Article  Google Scholar 

  • Gao K, Aruga Y, Asada K, Ishihara T, Akano T, Kiyohara M (1991) Enhanced growth of the red alga Porphyra yezoensis Ueda in high CO2 concentrations. J Appl Phycol 3:355–362

    Article  CAS  Google Scholar 

  • Gao K, Aruga Y, Asada K, Kiyohara M (1993) Influence of enhanced CO2 on growth and photosynthesis of the red algae Gracilaria sp. and G. chilensis. J Appl Phycol 5:563–571

    Article  CAS  Google Scholar 

  • Garcia-Sanchez MJ, Fernandez JA, Niell FX (1994) Effect of inorganic carbon supply on the photosynthetic physiology of Gracilaria tenuistipitata. Planta 194:55–61

    Article  CAS  Google Scholar 

  • Gaylord B, Kroeker KJ, Sunday JM, Anderson KM, Barry JP, Brown NE, Connel SD, Dupont S, Fabricius KE, Hall-Spencer JH, Klinger T, Milazzo M, Munday PL, Russell BD, Sanford E, Schreiber SJ, Thiyagarajan V, Vaughan ML, Widdicombe S, Harley CD (2015) Ocean acidification through the lens of ecological theory. Ecology 96:3–15

    Article  PubMed  Google Scholar 

  • Gellenbeck KW, Kraemer GP, McMurtry LA, Chapman DJ (1988) An experimental culture system for macroalgae and other aquatic life. Aquaculture 74:385–391

    Article  Google Scholar 

  • Giordano M, Beardall J, Raven JA (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation and evolution. Annu Rev Plant Biol 56:99–131

    Article  CAS  PubMed  Google Scholar 

  • Gordillo FJL, Niell FX, Figueroa FL (2001) Non-photosynthetic enhancement of growth by high CO2 level in the nitrophilic seaweed Ulva rigida C. Agardh (Chlorophyta). Planta 213:64–70

    Article  CAS  PubMed  Google Scholar 

  • Hafting JT, Critchley AT, Cornish ML, Hubley SA, Archibald AF (2011) On-land cultivation of functional seaweed products for human usage. J Appl Phycol 24:385–392

    Article  Google Scholar 

  • Hahn H, Krautkremer B, Hartmann K, Wachendorf M (2014) Review of concepts for a demand-driven biogas supply for flexible power generation. Renew Sust Energ Rev 29:383–393

    Article  Google Scholar 

  • Hanelt D, Wiencke C, Nultsch W (1997) Influence of UV radiation on the photosynthesis of arctic macroalgae in the field. J Photochem Photobiol B 38:40–47

    Article  CAS  Google Scholar 

  • Herppich WB, Herppich M, von Willert DJ (1998a) Ecophysiological investigations on plants of the genus Plectranthus (Lamiaceae). Influence of environment and leaf age on CAM gas exchange and leaf water relations in Plectranthus marrubioides Benth. Flora 193:99–109

  • Herppich WB, Herppich M, Tüffers A, von Willert DJ, Midgley GF, Veste M (1998b) Photosynthetic responses to CO2 concentration and photon fluence rates in the CAM-cycling plant Delosperma tradescantioides (Mesembryanthemaceae). New Phytol 138:433–440

    Article  Google Scholar 

  • Herppich WB, Flach BM-T, von Willert DJ, Herppich M (1997) Field investigations in Welwitschia mirabilis during a severe drought. II. Influence of leaf age, leaf temperature and irradiance on photosynthesis and photoinhibition. Flora 192:65–174

    Article  Google Scholar 

  • Hofmann LC, Bischof K, Baggini C, Johnson A, Koop-Jakobsen K, Teichberg M (2015) CO2 and inorganic nutrient enrichment affect the performance of a calcifying green alga and its noncalcifying epiphyte. Oecologia 177:1157–1169

    Article  PubMed  Google Scholar 

  • Huguenin JE (1976) An examination of problems and potentials for future large-scale intensive seaweed culture systems. Aquaculture 9:313–342

    Article  Google Scholar 

  • Israel A, Gavrieli J, Glazer A, Friedlander M (2005) Utilization of flue gas from a power plant for tank cultivation of the red seaweed Gracilaria cornea. Aquaculture 249:311–316

    Article  CAS  Google Scholar 

  • Israel A, Levy I, Friedlander M (2006) Experimental tank cultivation of Porphyra in Israel. J Appl Phycol 18:235–240

    Article  Google Scholar 

  • Jassby AD, Platt T (1976) Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol Oceanogr 21:540–547

    Article  CAS  Google Scholar 

  • Johnston AM, Maberly SC, Raven JA (1992) The acquisition of inorganic carbon by four red macroalgae. Oecologia 92:317–326

    Article  Google Scholar 

  • Kirschbaum MUF (2011) Does enhanced photosynthesis enhance growth? Lessons learned from CO2 enrichment studies. Plant Physiol 155:117–124

    Article  CAS  PubMed  Google Scholar 

  • Klughammer C, Schreiber U (2008) Complementary PS II quantum yields calculated from simple fluorescence parameters measured by PAM fluorometry and the saturation pulse method. PAM Application. Notes 1:27–35

    Article  Google Scholar 

  • Koch M, Bowes G, Ross C, Zhang X (2013) Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob Chang Biol 19:103–132

    Article  PubMed  Google Scholar 

  • Kramer DM, Johnson G, Kiirats O, Edwards GE (2004) New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynth Res 79:209–218

    Article  CAS  PubMed  Google Scholar 

  • Kübler JE, Raven JA (1995) The interaction between inorganic carbon acquisition and light supply in Palmaria palmata (Rhodophyta). J Phycol 31:369–375

    Article  Google Scholar 

  • Le Gall L, Pien S, Rusig AM (2004) Cultivation of Palmaria palmata (Palmariales, Rhodophyta) from isolated spores in semi-controlled conditions. Aquaculture 229:181–191

    Article  Google Scholar 

  • Lewis E, Wallace D (1998) Program developed for CO2 system calculations. Carbon Dioxide Information Analysis Center. Oak Ridge National Laboratory, Oak Ridge

    Google Scholar 

  • Li W, Gao K, Beardall J (2012) Interactive effects of ocean acidification and nitrogen limitation on the diatom Phaeodactylum tricornutum. PLoS One 7:e51590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N (2008) Biofuels from microalgae. Biotechnol Prog 24:815–820

    CAS  PubMed  Google Scholar 

  • Lüning K, Pang S (2002) Mass cultivation of seaweeds: current aspects and approaches. J Appl Phycol 15:115–119

    Article  Google Scholar 

  • Menendez M, Martınez M, Comin FA (2001) A comparative study of the effect of pH and inorganic carbon resources on the photosynthesis of three floating macroalgae species of a Mediterranean coastal lagoon. J Exp Mar Biol Ecol 256:123–136

    Article  CAS  PubMed  Google Scholar 

  • Mercado JM, Javier F, Gordillo L, Niell FX, Figueroa FL (1999) Effects of different levels of CO2 on photosynthesis and cell components of the red alga Porphyra leucosticta. J Appl Phycol 11:455–461

    Article  Google Scholar 

  • Morgan KC, Simpson FJ (1981a) The cultivation of Palmaria palmata. Effect of light intensity and nitrate supply on growth and chemical composition. Bot Mar 24:273–277

    Google Scholar 

  • Morgan KC, Simpson FJ (1981b) The cultivation of Palmaria palmata. Effect of high concentrations of nitrate and ammonium on growth and nitrogen uptake. Aquat Bot 11:167–171

    Article  CAS  Google Scholar 

  • Morgan KC, Shacklock PF, Simpson FJ (1980) Some aspects of the culture of Palmaria palmata in greenhouse tanks. Bot Mar 23:765–770

    Google Scholar 

  • Mueller P, Li XP, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–1566

    Article  Google Scholar 

  • Murru M, Sandgren DC (2004) Habitat matters for inorganic carbon acquisition in 38 species of red macroalgae (Rhodophyta) from Puget Sound Washington, USA. J Phycol 40:837–845

    Article  CAS  Google Scholar 

  • Mussgnug JH, Klassen V, Schlüter A, Kruse O (2010) Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J Biotechnol 150:51–56

    Article  CAS  PubMed  Google Scholar 

  • Nygård CA, Dring MJ (2008) Influence of salinity, temperature, dissolved inorganic carbon and nutrient concentration on the photosynthesis and growth of Fucus vesiculosus from the Baltic and Irish Seas. Eur J Phycol 43:253–262

    Article  Google Scholar 

  • Olesen JE, Bindi M (2002) Consequences of climate change for European agricultural productivity, land use and policy. Eur J Agron 16:239–262

    Article  Google Scholar 

  • Olischläger M, Wiencke C (2013) Ocean acidification alleviates low-temperature effects on growth and photosynthesis of the red alga Neosiphonia harveyi (Rhodophyta). J Exp Bot 64:5587–5597

    Article  PubMed  Google Scholar 

  • Pang S, Lüning K (2004) Tank cultivation of the red alga Palmaria palmata: effects of intermittent light on growth rate, yield and growth kinetics. J Appl Phycol 16:93–99

    Article  Google Scholar 

  • Pang S, Lüning K (2006) Tank cultivation of the red alga Palmaria palmata: year-round induction of tetrasporangia, tetraspore release in darkness and mass cultivation of vegetative thalli. Aquaculture 252:20–30

    Article  Google Scholar 

  • Pang S, Gomez I, Lüning K (2001) The red macroalga Delesseria sanguinea as a UVB-sensitive model organism: selective growth reduction by UVB in outdoor experiments and rapid recording of growth rate during and after UV pulses. Eur J Phycol 36:207–216

    Article  Google Scholar 

  • Papazi A, Makridis P, Divanach P, Kotzabasis K (2008) Bioenergetic changes in the microalgal photosynthetic apparatus by extremely high CO2 concentrations induce an intense biomass production. Physiol Plant 132:338–349

    Article  CAS  PubMed  Google Scholar 

  • Poeschl M, Ward S, Owende P (2010) Prospects for expanded utilization of biogas in Germany. Renew Sust Energ Rev 14:1782–1797

    Article  Google Scholar 

  • Poorter H (1993) Interspecific variation in the growth response of plants to an elevated ambient CO2 concentration. Vegetatio 104/105:77–97

    Article  Google Scholar 

  • Rathmann R, Szklo A, Schaeffer R (2010) Land use competition for production of food and liquid biofuels: an analysis of the arguments in the current debate. Renew Energy 35:14–22

    Article  Google Scholar 

  • Roleda MY, Hanelt D, Wiencke C (2006) Exposure to ultraviolet radiation delays photosynthetic recovery in Arctic kelp zoospores. Photosynth Res 88:311–322

    Article  CAS  PubMed  Google Scholar 

  • Roleda MY, Morris JN, McGraw CM, Hurd CL (2012) Ocean acidification and seaweed reproduction: increased CO2 ameliorates the negative effect of lowered pH on meiospore germination in the giant kelp Macrocystis pyrifera (Laminariales, Phaeophyceae). Glob Chang Biol 18:854–864

    Article  Google Scholar 

  • Sagert S, Schubert H (2000) Acclimation of Palmaria palmata (Rhodophyta) to light intensity: comparison between artificial and natural light fields. J Phycol 36:1119–1128

    Article  CAS  Google Scholar 

  • Sarker M, Bartsch I, Olischläger M, Gutow L, Wiencke C (2012) Combined effects of CO2, temperature, irradiance and time on the physiological performance of Chondrus crispus (Rhodophyta). Bot Mar 56:63–74

    Google Scholar 

  • Sastre R, Posten C (2010) The variety of microalgae applications as a renewable resource. Chem Ing Tech 82:1925–1939

  • Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1:20–43

    Article  Google Scholar 

  • Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulated fluorometer. Photosynth Res 10:51–62

    Article  CAS  PubMed  Google Scholar 

  • Shi D, Xu Y, Morel FMM (2009) Effects of the pH/pCO2 control method on medium chemistry and phytoplankton growth. Biogeosciences 6:1199–1207

    Article  CAS  Google Scholar 

  • Suárez-Àlvarez S, Gómez-Pinchetti JL, García-Reina G (2011) Effects of increased CO2 levels on growth, photosynthesis, ammonium uptake and cell composition in the macroalga Hypnea spinella (Gigartinales Rhodophyta). J Appl Phycol 24:815–823

    Article  Google Scholar 

  • Takahashi T, Williams RT, Bos DL (1982) Carbonate Chemistry. In: Broecker WS, Spence DW, Craig H (eds) GEOSECS Pacific Expedition Hydrographic Data, Vol. 3, pp 77–82

  • Titlyanov EA, Titlyanova TV (2010) Seaweed cultivation: methods and problems. Russ J Mar Biol 36:227–242

    Article  Google Scholar 

  • Wiley PE, Campbell JE, McKuin B (2011) Production of biodiesel and biogas from algae: a review of process train options. Water Environ Res 83:326–338

    Article  CAS  PubMed  Google Scholar 

  • Wu HY, Zou DH, Gao KS (2008) Impacts of increased atmospheric CO2 concentration on photosynthesis and growth of micro- and macroalgae. Sci China Ser C 51:1144–1150.

  • Xu Z, Zou D, Gao K (2010) Effects of elevated CO2 and phosphorus supply on growth, photosynthesis and nutrient uptake in the marine macroalga Gracilaria lemaneiformis (Rhodophyta). Bot Mar 53:123–129

    Article  CAS  Google Scholar 

  • Zamalloa C, Vulsteke E, Albrecht J, Verstraete W (2011) The techno-economic potential of renewable energy through the anaerobic digestion of microalgae. Bioresour Technol 102:1149–1158

    Article  CAS  PubMed  Google Scholar 

  • Zou D, Gao K (2009) Effects of elevated CO2 on the red seaweed Gracilaria lemaneiformis (Gigartinales, Rhodophyta) grown at different irradiance levels. Phycologia 48:510–517

    Article  CAS  Google Scholar 

  • Zou D, Gao K (2014) The photosynthetic and respiratory responses to temperature and nitrogen supply in the marine green macroalga Ulva conglobata (Chlorophyta). Phycologia 53:86–94

    Article  CAS  Google Scholar 

  • Zou D, Gao K, Luo H (2011) Short- and long-term effects of elevated CO2 on photosynthesis and respiration in the marine macroalga Hizikia fusiformis (Sargassaceae, Phaeophyta) grown at low and high N supplies. J Phycol 47:87–97

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

S. Sebök thanks Prof. K. Lüning for his constructive suggestions and comments during the course of this research and for his valuable advice during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Sebök.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sebök, S., Herppich, W.B. & Hanelt, D. Red alga Palmaria palmata—growth rate and photosynthetic performance under elevated CO2 treatment. J Appl Phycol 29, 381–393 (2017). https://doi.org/10.1007/s10811-016-0939-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-016-0939-8

Keywords

Navigation