Log in

CO2 and inorganic nutrient enrichment affect the performance of a calcifying green alga and its noncalcifying epiphyte

  • Physiological ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Ocean acidification studies in the past decade have greatly improved our knowledge of how calcifying organisms respond to increased surface ocean CO2 levels. It has become evident that, for many organisms, nutrient availability is an important factor that influences their physiological responses and competitive interactions with other species. Therefore, we tested how simulated ocean acidification and eutrophication (nitrate and phosphate enrichment) interact to affect the physiology and ecology of a calcifying chlorophyte macroalga (Halimeda opuntia (L.) J.V. Lamouroux) and its common noncalcifying epiphyte (Dictyota sp.) in a 4-week fully crossed multifactorial experiment. Inorganic nutrient enrichment (+NP) had a strong influence on all responses measured with the exception of net calcification. Elevated CO2 alone significantly decreased electron transport rates of the photosynthetic apparatus and resulted in phosphorus limitation in both species, but had no effect on oxygen production or respiration. The combination of CO2 and +NP significantly increased electron transport rates in both species. While +NP alone stimulated H. opuntia growth rates, Dictyota growth was significantly stimulated by nutrient enrichment only at elevated CO2, which led to the highest biomass ratios of Dictyota to Halimeda. Our results suggest that inorganic nutrient enrichment alone stimulates several aspects of H. opuntia physiology, but nutrient enrichment at a CO2 concentration predicted for the end of the century benefits Dictyota sp. and hinders its calcifying basibiont H. opuntia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Beach K, Walters L, Borgeas H, Smith C, Coyer J, Vroom P (2003) The impact of Dictyota spp. on Halimeda populations of Conch Reef, Florida Keys. J Exp Mar Biol Ecol 297:141–159

    Article  Google Scholar 

  • Belliveau SA, Paul VJ (2002) Effects of herbivory and nutrients on the early colonization of crustose coralline and fleshy algae. Mar Ecol Prog Ser 232:105–114

    Article  Google Scholar 

  • Berner RA, Morse JW (1974) Dissolution kinetics of calcium carbonate in sea water IV. Theory of calcite dissolution. Am J Sci 274(108):134

    Google Scholar 

  • Borowitzka MA, Larkum AWD (1976a) Calcification in the Green Alga Halimeda II. The exchange of Ca2+ and the occurence of age gradients in calcification and photosynthesis. J Exp Bot 27:864–878

    Article  CAS  Google Scholar 

  • Borowitzka MA, Larkum AWD (1976b) Calcification in the Green Alga Halimeda III. The sources of inorganic carbon for photosynthesis and calcification and a model of the mechanism of calcification. J Exp Bot 27:879–893

    Article  CAS  Google Scholar 

  • Borowitzka MA, Larkum AWD (1976c) Calcification in the Green Alga Halimeda IV. The action of metabolis inhibitiors on photosynthesis and calcification. J Exp Bot 27:894–907

    Article  CAS  Google Scholar 

  • Borowitzka MA, Larkum AWD (1977) Calcification in the green alga Halimeda. I. An ultrastructure study of thallus development. J Phycol 13:6–16

    Google Scholar 

  • Borowitzka MA, Larkum AWD (1987) Calcification in algae: mechanisms and the role of metabolism. Crit Rev Plant Sci 6:1–45

    Article  Google Scholar 

  • Carpenter RC (1986) Partitioning herbivory and its effects on coral reef algal communities. Ecol Monogr 56:345–363

  • Chauvin A, Denis V, Cuet P (2011) Is the response of coral calcification to seawater acidification related to nutrient loading? Coral Reefs 30:911–923

    Article  Google Scholar 

  • Comeau S, Edmunds PJ, Spindel NB, Carpenter RC (2013) The responses of eight coral reef calcifiers to increasing partial pressure of CO2 do not exhibit a tip** point. Limnol Oceanogr 58:388–398

    Article  CAS  Google Scholar 

  • Davies PS (1989) Short-term growth measurements of corals using an accurate buoyant weighing technique. Mar Biol 101:389–395

    Article  Google Scholar 

  • Delgado O, Lapointe BE (1994) Nutrient-limited productivity of calcareous versus fleshy macroalgae in a eutrophic, carbonate-rich tropical marine environment. Coral Reefs 13:151–159

    Article  Google Scholar 

  • Den Haan J, Visser PM, Ganase AE, Gooren EE, Stal LJ, van Duyl FC, Vermeij MJA, Huisman J (2014) Nitrogen fixation rates in algal turf communities of a degraded versus less degraded coral reef. Coral Reefs 33:1003–1015

    Article  Google Scholar 

  • Diaz-Pulido G, McCook LJ, Larkum AWD, Hoegh-Guldberg O (2007) Vulnerability of macroalgae of the Great Barrier Reef to climate change. In: Johnson JE, Marshall PA (eds) Climate change and the great barrier reef: a vulnerability assessment. Great Barrier Reef Marine Park Authority, Townsville, pp 153–192

  • Dickson AG (1990) Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K. Deep-Sea Res Part A 37(5):755–766

    Article  CAS  Google Scholar 

  • Dickson A (2010) The carbon dioxide system in seawater: equilibrium chemistry and measurements. In: Riebesell U, Fabry VJ, Hansson L, Gattuso J-P (eds) Guide to best practices for ocean acidification research and data reporting. Publications Office of the European Union, Luxembourg, p 260

    Google Scholar 

  • Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Res Part A 34:1733–1743

    Article  CAS  Google Scholar 

  • Drew EA (1983) Halimeda biomass, growth rates and sediment generation on reefs in the central Great Barrier Reef province. Coral Reefs 2:101–110

    Article  Google Scholar 

  • Drew EA, Abel KM (1987) Studies on Halimeda II. Reproduction, particularly the seasonality of gametangia formation, in a number of species from the Great Barrier Reef Province. Coral Reefs 6:207–218

    Article  Google Scholar 

  • Eilers PHC, Peeters JCH (1988) A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecol Model 42:199–215

    Article  Google Scholar 

  • Fabricius KE, Langdon C, Uthicke S, Humphrey C, Noonan S, Death G, Okazaki R, Muehllehner N, Glas MS, Lough JM (2011) Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat Clim Change 1:165–169

    Article  CAS  Google Scholar 

  • Falkenberg LJ, Russell BD, Connell SD (2012) Stability of strong species interactions resist the synergistic effects of local and global pollution in Kelp forests. PloS ONE. doi:10.1371/journal.pone.0033841

    Google Scholar 

  • Falkenberg LJ, Russell BD, Connell SD (2013) Contrasting resource limitations of marine primary producers: implications for competitive interactions under enriched CO2 and nutrient regimes. Oecologia 172:575–583

    Article  PubMed  Google Scholar 

  • Figueroa FL, Escassi L, Pérez-Rodríguez E, Korbee N, Delia Giles A, Johnsen G (2003) Effects of short-term irradiation on photo inhibition and accumulation of mycosporine-like amino acids in sun and shade species of the red algal genus Porphyra. J Photochem Photobiol B 69:21–30

    Article  CAS  PubMed  Google Scholar 

  • Findlay HS, Wood HL, Kendall MA, Spicer JI, Twitchett RJ, Widdicombe S (2011) Comparing the impact of high CO2 on calcium carbonate structures in different marine organisms. Mar Biol Res 7:565–575

    Article  Google Scholar 

  • Fischer JP, Koop-Jakobsen K (2012) The multi fiber optode (MuFO): a novel system for simultaneous analysis of multiple fiber optic oxygen sensors. Sens Actuators B 168:354–359

    Article  CAS  Google Scholar 

  • Froelich AS (1983). Functional aspects of nutrient cycling on coral reefs. In: Reaka ML (ed) ‘The Ecology of Deep and Shallow Coral Reefs, Symposia Series for Undersea Research’’, vol 1. NOAA, National Undersea Research Program, Rockville, pp. 133–139

  • Frost-Christensen H, Sand-Jensen K (1992) The quantum efficiency of photosynthesis in macroalgae and submerged angiosperms. Oecologia 91:377–384

    Article  Google Scholar 

  • Gao K, Zheng Y (2010) Combined effects of ocean acidification and solar UV radiation on photosynthesis, growth, pigmentation and calcification of the coralline alga Corallina sessilis (Rhodophyta). Glob Change Biol 16:2388–2398

    Article  Google Scholar 

  • Gao K, Aruga Y, Asada K, Ishihara T, Akano T, Kiyohara M (1991) Enhanced growth of the red alga Porphyra yezoensis Ueda in high CO2 concentrations. J Appl Phycol 3:355–362

    Article  CAS  Google Scholar 

  • Gao K, Aruga Y, Asada K, Kiyohara M (1993) Influence of enhanced CO2 on growth and photosynthesis of the red algae Gracilaria sp. and G. chilensis. J Appl Phycol 5:563–571

    Article  CAS  Google Scholar 

  • Gast GJ (1998) Nutrient pollution in coral reef waters. Reef Care Curaçao Contribution no. 5. http://www.nacri.org/greylit/GastNutrPollWorkshop.html. Accessed 8 Aug 2007

  • Gordillo FJ, Niell FX, Figueroa FL (2001) Non-photosynthetic enhancement of growth by high CO2 level in the nitrophilic seaweed Ulva rigida C. Agardh (Chlorophyta). Planta 213:64–70

    Article  CAS  PubMed  Google Scholar 

  • Grzymski J, Johnsen G, Sakshaug E (1997) The significance of intracellular self-shading on the biooptical properties of brown, red, and green macroalgae. J Phycol 33:408–414

    Article  Google Scholar 

  • Hay ME, Kappel QE, Fenical W (1994) Synergisms in plant defenses against herbivores: interactions of chemistry, calcification, and plant quality. Ecology 75:1714–1726

    Article  Google Scholar 

  • Hillis L (1997) Coralgal reefs from a calcareous green alga perspective, and a first carbonate budget. In: Proceedings of the 8th international coral reef symposium, Panama, pp 761–766

  • Hillis-Colinvaux L (1980) Ecology and taxonomy of Halimeda: primary producer of Coral Reefs. Adv Mar Biol 17:1–327

    Article  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bardbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    Article  CAS  PubMed  Google Scholar 

  • Hofmann LC, Straub S, Bischof K (2012a) Competition between calcifying and noncalcifying temperate marine macroalgae under elevated CO2 levels. Mar Ecol Prog Ser 464:89–105

    Article  CAS  Google Scholar 

  • Hofmann LC, Yildiz G, Hanelt D, Bischof K (2012b) Physiological responses of the calcifying rhodophyte Corallina officinalis (L.) to future CO2 levels. Mar Biol 159:783–792

    Article  CAS  Google Scholar 

  • Holcomb M, McCorkle DC, Cohen AL (2010) Long-term effects of nutrient and CO2 enrichment on the temperate coral Astrangia poculata (Ellis and Solander 1786). J Exp Mar Biol Ecol 386:27–33

    Article  Google Scholar 

  • Hurd CL, Cornwall CE, Currie K, Hepburn CD, McGraw CM, Hunter KA, Boyd PW (2011) Metabolically-induced pH fluctuations by some coastal calcifiers exceed projected 22nd century ocean acidification: a mechanism for differential susceptibility?. Glob Change Biol 17:3254–3262

    Article  Google Scholar 

  • Johnson MD, Price NN, Smith JE (2014) Contrasting effects of ocean acidification on fleshy and calcareous algae. Peer J 2:E411

    Article  PubMed Central  PubMed  Google Scholar 

  • Jokiel PL, Rodgers KS, Kuffner IB, Andersson AJ, Cox EF, Mackenzie FT (2008) Ocean acidification and calcifying reef organisms: a mesocosm investigation. Coral Reefs 27:473–483

    Article  Google Scholar 

  • Koroleff F (1983) Determination of phosphorus. In: Grasshoff K, Ehrhardt M, Kremling F (eds) Methods of seawater analysis. Chemie, Weinheim, pp 125–139

    Google Scholar 

  • Kübler JE, Johnston AM, Raven JA (1999) The effects of reduced and elevated CO2 and O2 on the seaweed Lomentaria articulata. Plant Cell Environ 22:1303–1310

    Article  Google Scholar 

  • Kuffner IB, Andersson AJ, Jokiel PL, Rodgers KS, Mackenzie FT (2008) Decreased abundance of crustose coralline algae due to ocean acidification. Nat Geosci 1:114–117

    Article  CAS  Google Scholar 

  • Langer G, Geisen M, Baumann KH, Kläs J, Riebesell U, Thoms S, Young JR (2006) Species-specific responses of calcifying algae to changing seawater carbonate chemistry. Geochem Geophys Geosystems 7:1–12

    Article  Google Scholar 

  • Lapointe BE, Littler MM, Littler DS (1987) A comparison of nutrient-limited productivity in macroalgae from a Caribbean barrier reef and from a mangrove ecosystem. Aquat Bot 28:243–255

    Article  Google Scholar 

  • Lapointe BE, Littler MM, Littler DS (1997) Macroalgal overgrowth of fringing coral reefs at Discovery Bay, Jamaica: bottom-up versus top-down control. In: Proceedings of the 8th international coral reef symosium vol 1, Panama, pp 927–923

  • Littler MM, Littler DS, Lapointe BE (1988) A comparison of nutrient-and light-limited photosynthesis in psammophytic versus epilithic forms of Halimeda (Caulerpales, Halimedaceae) from the Bahamas. Coral Reefs 6:219–225

    Article  Google Scholar 

  • Littler MM, Littler DS, Brooks BL (2006) Harmful algae on tropical coral reefs: bottom-up eutrophication and top-down herbivory. Harmful Algae 5:565–585

    Article  Google Scholar 

  • Marshall JF, Davies PJ (1988) Halimeda bioherms of the northern Great Barrier Reef. Coral Reefs 6:139–148

    Article  Google Scholar 

  • Martin S, Gattuso JP (2009) Response of Mediterranean coralline algae to ocean acidification and elevated temperature. Glob Change Biol 15:2089–2100

    Article  Google Scholar 

  • Matthiessen B, Eggers SL, Krug S (2012) High nitrate to phosphorus regime attenuates negative effects of rising pCO2 on total population carbon accumulation. Biogeosciences 9:1195–1203

    Article  CAS  Google Scholar 

  • Mattson WJ, Julkunen-Tiitto R, Herms DA (2005) CO2 enrichment and carbon partitioning to phenolics: do plant responses accord better with the protein competition or the growth differentiation balance models? Oikos 111:337–347

    Article  CAS  Google Scholar 

  • McConnaughey TA, Whelan JF (1997) Calcification generates protons for nutrient and bicarbonate uptake. Earth Sci Rev 42:95–117

    Article  CAS  Google Scholar 

  • McManus JW, Polsenberg JF (2004) Coral-algal phase shifts on coral reefs: ecological and environmental aspects. Prog Oceanogr 60:263–279

    Article  Google Scholar 

  • Mehrbach C, Culberson CH, Hawley JE, Pytkowicz RM (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907

    Article  CAS  Google Scholar 

  • Milliman JD (1993) Production and accumulation of calcium carbonate in the ocean: budget of a nonsteady state. Glob Biogeochem Cycles 7:927–957

    Article  CAS  Google Scholar 

  • Mwashote BM, Jumba IO (2002) Quantitative aspects of inorganic nutrient fluxes in the Gazi Bay (Kenya): implications for coastal ecosystems. Mar Pollut Bull 44:1194–1205

    Article  CAS  PubMed  Google Scholar 

  • Porzio L, Buia MC, Hall-Spencer JM (2011) Effects of ocean acidification on macroalgal communities. J Exp Mar Biol Ecol 400:278–287

    Article  CAS  Google Scholar 

  • Price NN, Hamilton SL, Smith JE (2011) Species-specific consequences of ocean acidification for the calcareous tropical green algae Halimeda. Mar Ecol Prog Ser 440:67–78

    Article  CAS  Google Scholar 

  • Rasheed M, Badran MI, Richter C, Huettel M (2002) Effect of reef framework and bottom sediment on nutrient enrichment in a coral reef of the Gulf of Aqaba, Red Sea. Mar Ecol Prog Ser 239:277–285

    Article  Google Scholar 

  • Rees SA, Opdyke BN, Wilson PA, Henstock TJ (2007) Significance of Halimeda bioherms to the global carbonate budget based on a geological sediment budget for the Northern Great Barrier Reef, Australia. Coral Reefs 26:177–188

    Article  Google Scholar 

  • Renegar DA, Riegl BM (2005) Effect of nutrient enrichment and elevated CO2 partial pressure on growth rate of Atlantic scleractinian coral Acropora cervicornis. Mar Ecol Prog Ser 293:69–76

    Article  Google Scholar 

  • Ries JB (2009) Effects of secular variation in seawater Mg/Ca ratio (calcite-aragonite seas) on CaCO3 sediment production by the calcareous algae Halimeda, Penicillus and Udotea-evidence from recent experiments and the geological record. Terra Nova 21:323–339

    Article  CAS  Google Scholar 

  • Ries JB, Cohen AL, McCorkle DC (2009) Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37:1131

    Article  CAS  Google Scholar 

  • Robbins LL, Knorr PO, Hallock P (2009) Response of Halimeda to ocean acidification: field and laboratory evidence. Biogeosci Discuss 6:4895–4918

    Article  Google Scholar 

  • Rothäusler E, Gómez I, Karsten U, Tala F, Thiel M (2011) UV-radiation versus grazing pressure: long-term floating of kelp rafts (Macrocystis pyrifera) is facilitated by efficient photo acclimation but undermined by grazing losses. Mar Biol 158:127–141

    Article  Google Scholar 

  • Russell BD, Thompson J-A, Falkenberg LJ, Connell SD (2009) Synergistic effects of climate change and local stressors: CO2 and nutrient-driven change in subtidal rocky habitats. Glob Change Biol 15:2153–2162

    Article  Google Scholar 

  • Sinutok S, Hill R, Doblin MA, Wuhrer R, Ralph PJ (2011) Warmer more acidic conditions cause decreased productivity and calcification in subtropical coral reef sediment-dwelling calcifiers. Limnol Oceanogr 56:1200–1212

    Article  CAS  Google Scholar 

  • Stachowicz JJ, Hay ME (1999) Reducing predation through chemically mediated camouflage: indirect effects of plant defenses on herbivores. Ecology 80:495–509

    Article  Google Scholar 

  • Steinberg PD (1984) Algal chemical defense against herbivores: allocation of phenolic compounds in the kelp Alaria marginata. Science 223:405–407

    Article  CAS  PubMed  Google Scholar 

  • Steinberg PD (1986) Chemical defenses and the susceptibility of tropical marine brown algae to herbivores. Oecologia 69:628–630

    Article  Google Scholar 

  • Suárez-Álvarez S, Gómez-Pinchetti JL, García-Reina G (2012) Effects of increased CO2 levels on growth, photosynthesis, ammonium uptake and cell composition in the macroalga Hypnea spinella (Gigartinales, Rhodophyta). J Appl Phycol 24:815–823

    Article  Google Scholar 

  • Targett NM, Arnold TM (1998) Minireview—predicting the effects of brown algal phlorotannins on marine herbivores in tropical and temperate oceans. J Phycol 34:195–205

    Article  CAS  Google Scholar 

  • Targett NM, Coen LD, Boettcher AA, Tanner CE (1992) Biogeographic comparisons of marine algal polyphenolics: evidence against a latitudinal trend. Oecologia 89:464–470

    Article  Google Scholar 

  • Teichberg M, Fricke A, Bischof K (2013) Increased physiological performance of the calcifying green macroalga Halimeda opuntia in response to experimental nutrient enrichment on a Caribbean coral reef. Aquat Bot 104:25–33

    Article  CAS  Google Scholar 

  • Thacker R, Ginsburg D, Paul V (2001) Effects of herbivore exclusion and nutrient enrichment on coral reef macroalgae and cyanobacteria. Coral Reefs 19:318–329

    Article  Google Scholar 

  • Webb KL, DuPaul WD, Wiebe W, Sottile W, Johannes RE (1975) Enewetak (Eniwetok) Atoll: aspects of the nitrogen cycle on a coral reef. Limnol Oceanogr 20:198–210

    Article  CAS  Google Scholar 

  • Wiebe WJ, Johannes RE, Webb KL (1975) Nitrogen fixation in a coral reef community. Science 188:257–259

    Article  CAS  PubMed  Google Scholar 

  • Zabala M, Ballesteros E (1989) Surface-dependent strategies and energy flux in benthic marine communities or, why corals do not exist in the Mediterranean. Sci Mar 53:3–17

    Google Scholar 

  • Zou D (2005) Effects of elevated atmospheric CO2 on growth, photosynthesis and nitrogen metabolism in the economic brown seaweed, Hizikia fusiforme (Sargassaceae, Phaeophyta). Aquaculture 250:726–735

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to extend their gratitude to Dr. Achim Meyer for his technical assistance in experimental set-up and trouble-shooting, and Philipp Laeseke for his participation in experimental maintenance. We also thank Matthias Birkicht and Dorothea Dasbach for analysis of dissolved inorganic nutrients and tissue carbon and nitrogen, respectively. Funding for this project was provided by the German Federal Ministry of Education and Research (BMBF) through the cooperative research project Biological Impacts of Ocean Acidification (BIOACID), the Doctoral Programme on Marine Ecosystem Helath and Conservation (MARES), the European Project on Ocean Acidification (EPOCA), the Max Planck Society FP7 ITN-SENSEnet (PITN-GA-2009-237868) and funds received from the Leibniz Program of the DFG to Prof. Dr. Antje Boetius.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurie C. Hofmann.

Additional information

Communicated by Elena Litchman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hofmann, L.C., Bischof, K., Baggini, C. et al. CO2 and inorganic nutrient enrichment affect the performance of a calcifying green alga and its noncalcifying epiphyte. Oecologia 177, 1157–1169 (2015). https://doi.org/10.1007/s00442-015-3242-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-015-3242-5

Keywords

Navigation