Log in

A variant of the equations of nonisothermal plastic flow

  • Published:
International Applied Mechanics Aims and scope

The Bodner–Partom model is modified to describe such features of deformation as nonmonotonic dependence of hardening rate on stored plastic strain. This effect is allowed for by representing the hardening rate, which is a constant in the Bodner–Partom model, as a functional of plastic strain and plastic work. The Bodner–Partom parameters are found for some low-alloyed steels. The experimental and calculated data are in satisfactory agreement. The uniaxial deformation model is generalized to the case of multiaxial deformation

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Rajendran, S. J. Bless, and D. S. Dawicke, “Evaluation of Bodner–Partom model parameters at high strain rate,” J. Eng. Mater. Technol., 108, 75–80 (1986).

    Article  Google Scholar 

  2. N. I. Bezukhov, V. L. Bazhanov, I. I. Gol’denblat, N. A. Nikolaenko, and A. M. Sinyukov, Strength, Stability, and Vibration Analyses at High Temperatures [in Russian], Mashinostroenie, Moscow (1965).

    Google Scholar 

  3. I. K. Senchenkov, Ya. A. Zhuk, and G. A. Tabieva, “Thermodynamically consistent modifications of generalized theories of thermoviscoplasticity,” Int. Appl. Mech., 34, No. 4, 345–351 (1998).

    Google Scholar 

  4. I. K. Senchenkov and G. A. Tabieva, “Determination of the parameters of the Bodner–Partom model for thermoviscoplastic deformation of materials,” Int. Appl. Mech., 32, No. 2, 132–139 (1996).

    Article  ADS  MATH  Google Scholar 

  5. S. R. Bodner, “Constitutive equations for dynamic material behavior,” in: U. Lindholm (ed.), Mechanical Behavior of Materials under Dynamic Loads, Springer-Verlag, New York (1968), pp. 176–199.

    Chapter  Google Scholar 

  6. S. R. Bodner and A. M. Merzer, “Viscoplastic constitutive equation for cooper with strain rate history and temperature effects,” J. Eng. Mater. Technol., 100, 388–394 (1978).

    Article  Google Scholar 

  7. S. R. Bodner, M. Naveh, and A. M. Merzer, “Deformation and buckling of axisymmetric viscoplastic shells under thermomechanical loading,” Int. J. Solids Struct., 27, 915–924 (1991).

    Article  Google Scholar 

  8. S. R. Bodner, I. Partom, and Y. Partom, “Uniaxial cyclic loading of elastic-viscoplastic material,” ASME, J. Appl. Mech., 46, 805–810 (1979).

    Article  ADS  Google Scholar 

  9. K. S. Chan, S. R. Bodner, and U. S. Lindholm, “Phenomenological modeling of hardening and thermal recovery in metals,” J. Eng. Mater. Technol., 110, 1–8 (1988).

    Article  Google Scholar 

  10. E. Krempl, “Viscoplastic models for high temperature applications,” Int. J. Solids Struct., 37, 279–291 (2000).

    Article  MATH  Google Scholar 

  11. V. Moreno and E. H. Jordan, “Prediction of material thermomechanical response with a unified viscoplastic constitutive model,” Int. J. Plasticity, 2, 223–245 (1986).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Shevchenko.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 48, No. 5, pp. 132–137, September–October 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shevchenko, A.Y., Banyas, M.V. & Senchenkov, I.K. A variant of the equations of nonisothermal plastic flow. Int Appl Mech 48, 602–607 (2012). https://doi.org/10.1007/s10778-012-0542-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-012-0542-x

Keywords

Navigation