Constitutive Equations for Dynamic Material Behavior

  • Chapter
Mechanical Behavior of Materials under Dynamic Loads

Abstract

The constitutive equations that have been developed for the dynamic behavior of materials presuppose the existence of a reference “static” yield criterion. An alternative formulation motivated by the work on dislocation dynamics considers the total deformation to consist of elastic and plastic components throughout the deformation history. This procedure permits the consideration of large deformations (finite strains) in a direct manner. The present paper outlines an elastic-viscoplastic theory based on this approach and includes numerical results for an internally pressurized thick walled sphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 9.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. F. Bell, “Single, Femperature Dependent Stress-Strain law For the Dynamic Plastic Deformation of Annealed FCC Metals,” J. Appl. Plus., 34, 131 (1963).

    ADS  Google Scholar 

  2. J. F. Bell. “Geneialized Large Deformation Behavior for FCC Solids,” Phil. Mag., 11, 1135 (1965).

    Article  ADS  Google Scholar 

  3. A. Rosen and S. R. Bodner, “‘I’ he Inlluence of Strain Rate and Strain Age ing on the Flow Stress of Commercially-Pure Aluminum,” J. Mech. Phvs. Solids, 15, 17 (1967).

    ADS  Google Scholar 

  4. S. R. Bodner and A. Rosen, “Discontinuous Yielding of Commercially-Pure Aluminum,” J. Mech. Phys. Solids, 15, 63 (1967).

    Article  ADS  Google Scholar 

  5. M. J. Manjoine, “Influence of Rate of Strain and Temperature on Yield Stresses of Mild Steel,” Frans. ASMF, 66, A211 (1944).

    Google Scholar 

  6. L. E. Malvern, “Plastic Wave Propagation in a Bar of Material Exhibiting a Strain Rate Effect,” Quart. Appl. Math., 8, 405 (1950).

    MathSciNet  Google Scholar 

  7. L. E. Malvern, “The Propagation of Longitudinal Waves of Plastic Deformation in a Bar of Material Exhibiting a Strain Rate Effect,” J. Appl. Mech., 18, 203 (1951).

    MathSciNet  Google Scholar 

  8. S. R. Bodner and P. S. Symonds, “Experimental and Theoretical Investigation of the Plastic Deformation of Cantilever Beams Subjected to Impulsive Loading,” J. Appl. Mech., 29, 719 (1962).

    Article  ADS  Google Scholar 

  9. S. R. Bodner and W. G. Speirs, “Dynamic Plasticity Experiments on Aluminum Cantilever Beams at Elevated Temperature,” J. Mech. Phys. Solids, 77, 65 (1963).

    Article  ADS  Google Scholar 

  10. J. Lubliner. “A Generalized Theory of Strain Rate Dependent Plastic Wave Propagation in Bars,” J. Mech. Phys. Solids, 12, 59 (1964).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. P. Perzyna, “The Constitutive Equations for Rate Sensitive Plastic Materials,” Quart. Appl. Math., 20, 321 (1963).

    MathSciNet  MATH  Google Scholar 

  12. See: W. Prager, Introduction to Mechanics of Continua, Ginn and Co., Boston, Mass., 136 (1961).

    MATH  Google Scholar 

  13. P. Perzyna, “The Study of the Dynamic Behavior of Rate Sensitive Plastic Materials,” Arch. Mech. Stos., 15, 113 (1963).

    MathSciNet  MATH  Google Scholar 

  14. U. S. Lindholm, “Dynamic Deformation of Metals,” in Behavior of Materials Under Dynamic Loading, ed. by N. J. Huffington, Jr., ASME, New York (1965).

    Google Scholar 

  15. P. Perzyna and W. Wojno, “On the Constitutive Equations of Elastic/Viscoplastic Materials at Finite Strain,” Arch. Mech. Stos., 18, 85 (1966).

    MathSciNet  MATH  Google Scholar 

  16. W. G. Johnston and J. J. Gilman, “Dislocation Velocities, Dislocation Densities, and Plastic Flow in Lithium Fluoride Crystals,” J. Appl. Phys., 30, 129 (1959).

    Article  ADS  Google Scholar 

  17. W. G. Johnston, “Yield Points and Delay Times in Single Crystals,” J. Appl. Phys., 33, 2716 (1962).

    Article  ADS  Google Scholar 

  18. G. T. Hahn, “A Model for Yielding with Special Reference to the Yield Point Phenomena of Iron and Related BCC Metals,” Acta Met., 10, 727 (1962).

    Article  Google Scholar 

  19. J. J. Gilman, “Dislocation Mobility in Crystals,” J. Appl. Phys., 36, 3195 (1965).

    Article  ADS  Google Scholar 

  20. S. R. Bodner, “The Mechanics of Repeated Discontinuous Yielding of Metals,” Mat. Science and Engin. 2, 213 (1967).

    Article  Google Scholar 

  21. Y. Partom and S. R. Bodner, “Large Deformations of an Elastic-Visco-plastic Sphere” (in preparation).

    Google Scholar 

  22. Y. Partom, “The Dilatational and Distortional Partition of the Energy Function in Finite Strain,” Israel J. Tech., 4, 218 (1966).

    Google Scholar 

  23. G. T. Hahn, C. N. Reid, and A. Gilbert, “Dislocation Dynamics of Yielding and Fracture,” Proc. of Symposium on the Role of Substructure in the Mechanical Behavior of Metals, Report No. ASD-TR-63-324, U.S. Air Force Systems Command, 253 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1968 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Bodner, S.R. (1968). Constitutive Equations for Dynamic Material Behavior. In: Lindholm, U.S. (eds) Mechanical Behavior of Materials under Dynamic Loads. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-87445-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-87445-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-87447-5

  • Online ISBN: 978-3-642-87445-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation